{"title":"The existence and multiplicity of L 2-normalized solutions to nonlinear Schrödinger equations with variable coefficients","authors":"Norihisa Ikoma, Mizuki Yamanobe","doi":"10.1515/ans-2022-0056","DOIUrl":null,"url":null,"abstract":"The existence of <jats:italic>L</jats:italic> <jats:sup>2</jats:sup>–normalized solutions is studied for the equation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi>μ</m:mi> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mtext> </m:mtext> <m:mtext> </m:mtext> <m:mtext>in</m:mtext> <m:mspace width=\"0.3333em\" /> <m:msup> <m:mrow> <m:mi mathvariant=\"bold\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> <m:msub> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"bold\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> </m:msub> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mspace width=\"0.17em\" /> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>=</m:mo> <m:mi>m</m:mi> <m:mo>.</m:mo> </m:math> <jats:tex-math> $-{\\Delta}u+\\mu u=f\\left(x,u\\right)\\quad \\quad \\text{in} {\\mathbf{R}}^{N},\\quad {\\int }_{{\\mathbf{R}}^{N}}{u}^{2} \\mathrm{d}x=m.$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2022-0056_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> Here <jats:italic>m</jats:italic> > 0 and <jats:italic>f</jats:italic>(<jats:italic>x</jats:italic>, <jats:italic>s</jats:italic>) are given, <jats:italic>f</jats:italic>(<jats:italic>x</jats:italic>, <jats:italic>s</jats:italic>) has the <jats:italic>L</jats:italic> <jats:sup>2</jats:sup>-subcritical growth and (<jats:italic>μ</jats:italic>, <jats:italic>u</jats:italic>) ∈ R × <jats:italic>H</jats:italic> <jats:sup>1</jats:sup>(R <jats:sup> <jats:italic>N</jats:italic> </jats:sup>) are unknown. In this paper, we employ the argument in Hirata and Tanaka (“Nonlinear scalar field equations with <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> constraint: mountain pass and symmetric mountain pass approaches,” <jats:italic>Adv. Nonlinear Stud.</jats:italic>, vol. 19, no. 2, pp. 263–290, 2019) and find critical points of the Lagrangian function. To obtain critical points of the Lagrangian function, we use the Palais–Smale–Cerami condition instead of Condition (PSP) in Hirata and Tanaka (“Nonlinear scalar field equations with <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> constraint: mountain pass and symmetric mountain pass approaches,” <jats:italic>Adv. Nonlinear Stud.</jats:italic>, vol. 19, no. 2, pp. 263–290, 2019). We also prove the multiplicity result under the radial symmetry.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"305 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0056","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The existence of L2–normalized solutions is studied for the equation −Δu+μu=f(x,u)inRN,∫RNu2dx=m. $-{\Delta}u+\mu u=f\left(x,u\right)\quad \quad \text{in} {\mathbf{R}}^{N},\quad {\int }_{{\mathbf{R}}^{N}}{u}^{2} \mathrm{d}x=m.$ Here m > 0 and f(x, s) are given, f(x, s) has the L2-subcritical growth and (μ, u) ∈ R × H1(R N) are unknown. In this paper, we employ the argument in Hirata and Tanaka (“Nonlinear scalar field equations with L2 constraint: mountain pass and symmetric mountain pass approaches,” Adv. Nonlinear Stud., vol. 19, no. 2, pp. 263–290, 2019) and find critical points of the Lagrangian function. To obtain critical points of the Lagrangian function, we use the Palais–Smale–Cerami condition instead of Condition (PSP) in Hirata and Tanaka (“Nonlinear scalar field equations with L2 constraint: mountain pass and symmetric mountain pass approaches,” Adv. Nonlinear Stud., vol. 19, no. 2, pp. 263–290, 2019). We also prove the multiplicity result under the radial symmetry.
研究了 R N 中方程 - Δ u + μ u = f ( x , u ) 的 L 2 归一化解的存在性 , ∫ R N u 2 d x = m . $-{Delta}u+\mu u=f\left(x,u\right)\quad \quad \text{in}{mathbf{R}}^{N},\quad {int }_{mathbf{R}}^{N}}{u}^{2}\这里 m > 0 和 f(x, s) 是给定的,f(x, s) 具有 L 2 次临界增长,且 (μ, u)∈ R × H 1(R N ) 是未知的。本文采用 Hirata 和 Tanaka 的论证("具有 L 2 约束的非线性标量场方程:山口和对称山口方法",《非线性研究》,第 19 卷第 2 期,第 263-290 页,2019 年),找到了拉格朗日函数的临界点。为了获得拉格朗日函数的临界点,我们使用了 Palais-Smale-Cerami 条件,而不是 Hirata 和 Tanaka("带 L 2 约束的非线性标量场方程:山口和对称山口方法",《非线性研究》,第 19 卷第 2 期,第 263-290 页,2019 年)中的条件 (PSP)。我们还证明了径向对称下的多重性结果。
期刊介绍:
Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.