Estimation of Models for Stock Returns

IF 1.9 4区 经济学 Q2 ECONOMICS Computational Economics Pub Date : 2024-03-15 DOI:10.1007/s10614-024-10580-x
{"title":"Estimation of Models for Stock Returns","authors":"","doi":"10.1007/s10614-024-10580-x","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Composite distributions where volatility itself is assumed to be a random variable have been used to model stock returns. In this paper, we give details of estimation of these composite distributions when the volatility is assumed to follow an arbitrary distribution and the conditional distribution of stock returns given the volatility follows one of normal, Laplace, uniform, Student’s <em>t</em>, Cauchy, logistic of type I, logistic of type II, logistic of type III, logistic of type IV, generalized normal or skew normal distributions. The details given include estimating equations and observed information matrices. An application to Bitcoin exchange rate data is illustrated. Models taking volatility to follow gamma and Weibull distributions are shown to provide excellent fits.</p>","PeriodicalId":50647,"journal":{"name":"Computational Economics","volume":"4 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10580-x","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Composite distributions where volatility itself is assumed to be a random variable have been used to model stock returns. In this paper, we give details of estimation of these composite distributions when the volatility is assumed to follow an arbitrary distribution and the conditional distribution of stock returns given the volatility follows one of normal, Laplace, uniform, Student’s t, Cauchy, logistic of type I, logistic of type II, logistic of type III, logistic of type IV, generalized normal or skew normal distributions. The details given include estimating equations and observed information matrices. An application to Bitcoin exchange rate data is illustrated. Models taking volatility to follow gamma and Weibull distributions are shown to provide excellent fits.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
股票收益模型的估计
摘要 假定波动率本身是一个随机变量的复合分布已被用于建立股票收益模型。本文详细介绍了在假定波动率服从任意分布且股票收益率的条件分布服从正态分布、拉普拉斯分布、均匀分布、Student's t 分布、Cauchy 分布、I 型 logistic 分布、II 型 logistic 分布、III 型 logistic 分布、IV 型 logistic 分布、广义正态分布或偏斜正态分布时如何估计这些复合分布。给出的细节包括估计方程和观测信息矩阵。对比特币汇率数据的应用进行了说明。将波动率视为伽马分布和威布尔分布的模型提供了很好的拟合效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Economics
Computational Economics MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.00
自引率
15.00%
发文量
119
审稿时长
12 months
期刊介绍: Computational Economics, the official journal of the Society for Computational Economics, presents new research in a rapidly growing multidisciplinary field that uses advanced computing capabilities to understand and solve complex problems from all branches in economics. The topics of Computational Economics include computational methods in econometrics like filtering, bayesian and non-parametric approaches, markov processes and monte carlo simulation; agent based methods, machine learning, evolutionary algorithms, (neural) network modeling; computational aspects of dynamic systems, optimization, optimal control, games, equilibrium modeling; hardware and software developments, modeling languages, interfaces, symbolic processing, distributed and parallel processing
期刊最新文献
Assessing the Dual Impact of the Social Media Platforms on Psychological Well-being: A Multiple-Option Descriptive-Predictive Framework Modeling Asset Price Process: An Approach for Imaging Price Chart with Generative Diffusion Models Is the Price of Ether Driven by Demand or Pure Speculation? Iterative Deep Learning Approach to Active Portfolio Management with Sentiment Factors Asset Prices with Investor Protection in the Cross-Sectional Economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1