{"title":"Infinitely many free or prescribed mass solutions for fractional Hartree equations and Pohozaev identities","authors":"Silvia Cingolani, Marco Gallo, Kazunaga Tanaka","doi":"10.1515/ans-2023-0110","DOIUrl":null,"url":null,"abstract":"In this paper we study the following nonlinear fractional Hartree (or Choquard-Pekar) equation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi>μ</m:mi> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> <m:mo>*</m:mo> <m:mi>F</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>F</m:mi> </m:mrow> <m:mrow> <m:mo>′</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mtext> </m:mtext> <m:mtext>in</m:mtext> <m:mspace width=\"0.3333em\" /> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> </m:math> <jats:tex-math> ${\\left(-{\\Delta}\\right)}^{s}u+\\mu u=\\left({I}_{\\alpha }{\\ast}F\\left(u\\right)\\right){F}^{\\prime }\\left(u\\right)\\quad \\text{in} {\\mathbb{R}}^{N},$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0110_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> (*) where <jats:italic>μ</jats:italic> > 0, <jats:italic>s</jats:italic> ∈ (0, 1), <jats:italic>N</jats:italic> ≥ 2, <jats:italic>α</jats:italic> ∈ (0, <jats:italic>N</jats:italic>), <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> <m:mo>∼</m:mo> <m:mfrac> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfrac> </m:math> <jats:tex-math> ${I}_{\\alpha }\\sim \\frac{1}{\\vert x{\\vert }^{N-\\alpha }}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0110_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula> is the Riesz potential, and <jats:italic>F</jats:italic> is a general subcritical nonlinearity. The goal is to prove existence of multiple (radially symmetric) solutions <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>u</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math> $u\\in {H}^{s}\\left({\\mathbb{R}}^{N}\\right)$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0110_ineq_003.png\" /> </jats:alternatives> </jats:inline-formula>, by assuming <jats:italic>F</jats:italic> odd or even: we consider both the case <jats:italic>μ</jats:italic> > 0 fixed and the case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msub> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> </m:msub> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>=</m:mo> <m:mi>m</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math> ${\\int }_{{\\mathbb{R}}^{N}}{u}^{2}=m{ >}0$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0110_ineq_004.png\" /> </jats:alternatives> </jats:inline-formula> prescribed. Here we also simplify some arguments developed for <jats:italic>s</jats:italic> = 1 (S. Cingolani, M. Gallo, and K. Tanaka, “Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities,” <jats:italic>Calc. Var. Partial Differ. Equ.</jats:italic>, vol. 61, no. 68, p. 34, 2022). A key point in the proof is given by the research of suitable multidimensional odd paths, which was done in the local case by Berestycki and Lions (H. Berestycki and P.-L. Lions, “Nonlinear scalar field equations II: existence of infinitely many solutions,” <jats:italic>Arch. Ration. Mech. Anal.</jats:italic>, vol. 82, no. 4, pp. 347–375, 1983); for (*) the nonlocalities play indeed a special role. In particular, some properties of these paths are needed in the asymptotic study (as <jats:italic>μ</jats:italic> varies) of the mountain pass values of the unconstrained problem, then exploited to describe the geometry of the constrained problem and detect infinitely many normalized solutions for any <jats:italic>m</jats:italic> > 0. The found solutions satisfy in addition a Pohozaev identity: in this paper we further investigate the validity of this identity for solutions of doubly nonlocal equations under a <jats:italic>C</jats:italic> <jats:sup>1</jats:sup>-regularity.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"80 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0110","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we study the following nonlinear fractional Hartree (or Choquard-Pekar) equation (−Δ)su+μu=(Iα*F(u))F′(u)inRN, ${\left(-{\Delta}\right)}^{s}u+\mu u=\left({I}_{\alpha }{\ast}F\left(u\right)\right){F}^{\prime }\left(u\right)\quad \text{in} {\mathbb{R}}^{N},$ (*) where μ > 0, s ∈ (0, 1), N ≥ 2, α ∈ (0, N), Iα∼1|x|N−α ${I}_{\alpha }\sim \frac{1}{\vert x{\vert }^{N-\alpha }}$ is the Riesz potential, and F is a general subcritical nonlinearity. The goal is to prove existence of multiple (radially symmetric) solutions u∈Hs(RN) $u\in {H}^{s}\left({\mathbb{R}}^{N}\right)$ , by assuming F odd or even: we consider both the case μ > 0 fixed and the case ∫RNu2=m>0 ${\int }_{{\mathbb{R}}^{N}}{u}^{2}=m{ >}0$ prescribed. Here we also simplify some arguments developed for s = 1 (S. Cingolani, M. Gallo, and K. Tanaka, “Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities,” Calc. Var. Partial Differ. Equ., vol. 61, no. 68, p. 34, 2022). A key point in the proof is given by the research of suitable multidimensional odd paths, which was done in the local case by Berestycki and Lions (H. Berestycki and P.-L. Lions, “Nonlinear scalar field equations II: existence of infinitely many solutions,” Arch. Ration. Mech. Anal., vol. 82, no. 4, pp. 347–375, 1983); for (*) the nonlocalities play indeed a special role. In particular, some properties of these paths are needed in the asymptotic study (as μ varies) of the mountain pass values of the unconstrained problem, then exploited to describe the geometry of the constrained problem and detect infinitely many normalized solutions for any m > 0. The found solutions satisfy in addition a Pohozaev identity: in this paper we further investigate the validity of this identity for solutions of doubly nonlocal equations under a C1-regularity.
本文研究了以下非线性分数哈特里(或乔夸-佩卡)方程 ( - Δ ) s u + μ u = ( I α * F ( u ) ) F ′ ( u ) in R N , ${left(-{Delta}\right)}^{s}u+\mu u=\left({I}_{\alpha }\{ast}F\left(u\right)\right){F}^{prime }\left(u\right)\quad \text{in}{mathbb{R}}^{N},$ (*) 其中 μ > 0, s∈ (0, 1), N ≥ 2, α∈ (0, N), I α ∼ 1 | x | N - α ${I}_{\alpha }\sim \frac{1}{vert x\vert }^{N-\alpha }}$ 是里兹势,F 是一般的次临界非线性。我们的目标是通过假设 F 为奇数或偶数,证明多个(径向对称)解 u∈ H s ( R N ) $u\in {H}^{s}\left({\mathbb{R}}^{N}\right)$ 的存在性:我们既考虑了 μ > 0 固定的情况,也考虑了 ∫ R N u 2 = m > 0 ${\int }_{\mathbb{R}}^{N}}{u}^{2}=m{ >}0$ 规定的情况。这里我们还简化了一些针对 s = 1 的论证(S. Cingolani, M. Gallo, and K. Tanaka, "Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities," Calc.Var.Partial Differ.Equ.,第 61 卷,第 68 期,第 34 页,2022 年)。证明中的一个关键点是研究合适的多维奇数路径,这是由 Berestycki 和 Lions 在局部情况下完成的(H. Berestycki and P.-L. Lions, "Nonlinear scalar field equations II: existence of infinitely many solutions," Arch.Ration.Mech.Anal.4, pp.特别是,在对无约束问题的山口值进行渐近研究(当 μ 变化时)时,需要这些路径的一些特性,然后利用这些特性来描述约束问题的几何形状,并检测出任意 m > 0 的无限多归一化解。
期刊介绍:
Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.