A Bayesian Moderated Nonlinear Factor Analysis Approach for DIF Detection under Violation of the Equal Variance Assumption

IF 1.4 4区 心理学 Q3 PSYCHOLOGY, APPLIED Journal of Educational Measurement Pub Date : 2024-03-15 DOI:10.1111/jedm.12388
Sooyong Lee, Suhwa Han, Seung W. Choi
{"title":"A Bayesian Moderated Nonlinear Factor Analysis Approach for DIF Detection under Violation of the Equal Variance Assumption","authors":"Sooyong Lee,&nbsp;Suhwa Han,&nbsp;Seung W. Choi","doi":"10.1111/jedm.12388","DOIUrl":null,"url":null,"abstract":"<p>Research has shown that multiple-indicator multiple-cause (MIMIC) models can result in inflated Type I error rates in detecting differential item functioning (DIF) when the assumption of equal latent variance is violated. This study explains how the violation of the equal variance assumption adversely impacts the detection of nonuniform DIF and how it can be addressed through moderated nonlinear factor analysis (MNLFA) model via Bayesian estimation approach to overcome limitations from the restrictive assumption. The Bayesian MNLFA approach suggested in this study better control Type I errors by freely estimating latent factor variances across different groups. Our experimentation with simulated data demonstrates that the BMNFA models outperform the existing MIMIC models, in terms of Type I error control as well as parameter recovery. The results suggest that the MNLFA models have the potential to be a superior choice to the existing MIMIC models, especially in situations where the assumption of equal latent variance assumption is not likely to hold.</p>","PeriodicalId":47871,"journal":{"name":"Journal of Educational Measurement","volume":"61 2","pages":"303-324"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Measurement","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jedm.12388","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Research has shown that multiple-indicator multiple-cause (MIMIC) models can result in inflated Type I error rates in detecting differential item functioning (DIF) when the assumption of equal latent variance is violated. This study explains how the violation of the equal variance assumption adversely impacts the detection of nonuniform DIF and how it can be addressed through moderated nonlinear factor analysis (MNLFA) model via Bayesian estimation approach to overcome limitations from the restrictive assumption. The Bayesian MNLFA approach suggested in this study better control Type I errors by freely estimating latent factor variances across different groups. Our experimentation with simulated data demonstrates that the BMNFA models outperform the existing MIMIC models, in terms of Type I error control as well as parameter recovery. The results suggest that the MNLFA models have the potential to be a superior choice to the existing MIMIC models, especially in situations where the assumption of equal latent variance assumption is not likely to hold.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在违反等方差假定的情况下进行 DIF 检测的贝叶斯调节非线性因子分析方法
研究表明,当违反潜在方差相等的假设时,多指标多原因(MIMIC)模型在检测差异项目功能(DIF)时可能会导致 I 类错误率上升。本研究解释了违反等方差假设如何对非均匀 DIF 的检测产生不利影响,以及如何通过贝叶斯估计方法的调节非线性因素分析(MNLFA)模型来克服限制性假设的局限性。本研究提出的贝叶斯 MNLFA 方法通过自由估计不同组的潜在因子方差,更好地控制了 I 类误差。我们用模拟数据进行的实验表明,BMNFA 模型在 I 类误差控制和参数恢复方面优于现有的 MIMIC 模型。结果表明,MNLFA 模型有可能成为优于现有 MIMIC 模型的选择,尤其是在等潜方差假设不可能成立的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
46
期刊介绍: The Journal of Educational Measurement (JEM) publishes original measurement research, provides reviews of measurement publications, and reports on innovative measurement applications. The topics addressed will interest those concerned with the practice of measurement in field settings, as well as be of interest to measurement theorists. In addition to presenting new contributions to measurement theory and practice, JEM also serves as a vehicle for improving educational measurement applications in a variety of settings.
期刊最新文献
Sequential Reservoir Computing for Log File‐Based Behavior Process Data Analyses Issue Information Exploring Latent Constructs through Multimodal Data Analysis Robustness of Item Response Theory Models under the PISA Multistage Adaptive Testing Designs Modeling Nonlinear Effects of Person‐by‐Item Covariates in Explanatory Item Response Models: Exploratory Plots and Modeling Using Smooth Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1