{"title":"Development of a novel nonrigid support friction stir welding repair robot for aluminum alloy train","authors":"Taotao Jin, Xiuhui Cui, Chuanyue Qi, Xinyu Yang","doi":"10.1108/ir-10-2023-0241","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to develop a specific type of mobile nonrigid support friction stir welding (FSW) robot, which can adapt to aluminum alloy trucks for rapid online repair.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The friction stir welding robot is designed to complete online repair according to the surface damage of large aluminum alloy trucks. A rotatable telescopic arm unit and a structure for a cutting board in the shape of a petal that was optimized by finite element analysis are designed to give enough top forging force for welding to address the issues of inadequate support and significant deformation in the repair process.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The experimental results indicate that the welding robot is capable of performing online surface repairs for large aluminum alloy trucks without rigid support on the backside, and the welding joint exhibits satisfactory performance.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>Compared with other heavy-duty robotic arms and gantry-type friction stir welding robots, this robot can achieve online welding without disassembling the vehicle body, and it requires less axial force. This lays the foundation for the future promotion of lightweight equipment.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The designed friction stir welding robot is capable of performing online repairs without dismantling the aluminum alloy truck body, even in situations where sufficient upset force is unavailable. It ensures welding quality and exhibits high efficiency. This approach is considered novel in the field of lightweight online welding repairs, both domestically and internationally.</p><!--/ Abstract__block -->","PeriodicalId":501389,"journal":{"name":"Industrial Robot","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ir-10-2023-0241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This paper aims to develop a specific type of mobile nonrigid support friction stir welding (FSW) robot, which can adapt to aluminum alloy trucks for rapid online repair.
Design/methodology/approach
The friction stir welding robot is designed to complete online repair according to the surface damage of large aluminum alloy trucks. A rotatable telescopic arm unit and a structure for a cutting board in the shape of a petal that was optimized by finite element analysis are designed to give enough top forging force for welding to address the issues of inadequate support and significant deformation in the repair process.
Findings
The experimental results indicate that the welding robot is capable of performing online surface repairs for large aluminum alloy trucks without rigid support on the backside, and the welding joint exhibits satisfactory performance.
Practical implications
Compared with other heavy-duty robotic arms and gantry-type friction stir welding robots, this robot can achieve online welding without disassembling the vehicle body, and it requires less axial force. This lays the foundation for the future promotion of lightweight equipment.
Originality/value
The designed friction stir welding robot is capable of performing online repairs without dismantling the aluminum alloy truck body, even in situations where sufficient upset force is unavailable. It ensures welding quality and exhibits high efficiency. This approach is considered novel in the field of lightweight online welding repairs, both domestically and internationally.