A novel BODIPY-based theranostic agent for in vivo fluorescence imaging of cerebral Aβ and ameliorating Aβ-associated disorders in Alzheimer's disease transgenic mice†

IF 3.597 Q2 Pharmacology, Toxicology and Pharmaceutics MedChemComm Pub Date : 2024-03-15 DOI:10.1039/D3MD00744H
Jingjing Zhang, Wenming Ren, Xiaohui Liu, Jingjing Chen, Yuteng Zeng, Huaijiang Xiang, Youhong Hu and Haiyan Zhang
{"title":"A novel BODIPY-based theranostic agent for in vivo fluorescence imaging of cerebral Aβ and ameliorating Aβ-associated disorders in Alzheimer's disease transgenic mice†","authors":"Jingjing Zhang, Wenming Ren, Xiaohui Liu, Jingjing Chen, Yuteng Zeng, Huaijiang Xiang, Youhong Hu and Haiyan Zhang","doi":"10.1039/D3MD00744H","DOIUrl":null,"url":null,"abstract":"<p >β-Amyloid (Aβ) aggregation is increasingly recognized as both a biomarker and an inducer of the progression of Alzheimer's disease (AD). Here, we describe a novel fluorescent probe <strong>P14</strong>, developed based on the BODIPY structure, capable of simultaneous visualization and inhibition of Aβ aggregation <em>in vivo</em>. <strong>P14</strong> shows high binding affinity to Aβ aggregates and selectively labels Aβ plaques in the brain slices of APP/PS1 mice. Moreover, <strong>P14</strong> is able to visualize overloaded Aβ in both APP/PS1 and 5 × FAD transgenic mice <em>in vivo</em>. From the aspect of potential therapeutic effects, <strong>P14</strong> administration inhibits Aβ aggregation and alleviates Aβ-induced neuronal damage <em>in vitro</em>, as well as reduces central Aβ deposition and ameliorates cognitive impairment in APP/PS1 transgenic mice <em>in vivo</em>. Finally, <strong>P14</strong> is applied to monitor the progression of Aβ aggregation in the brain of 5 × FAD transgenic mice and the intervention effect itself by fluorescence imaging. In summary, the discovery of this fluorescent agent might provide important clues for the future development of theranostic drug candidates targeting Aβ aggregation in AD.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 4","pages":" 1216-1224"},"PeriodicalIF":3.5970,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedChemComm","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/md/d3md00744h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

β-Amyloid (Aβ) aggregation is increasingly recognized as both a biomarker and an inducer of the progression of Alzheimer's disease (AD). Here, we describe a novel fluorescent probe P14, developed based on the BODIPY structure, capable of simultaneous visualization and inhibition of Aβ aggregation in vivo. P14 shows high binding affinity to Aβ aggregates and selectively labels Aβ plaques in the brain slices of APP/PS1 mice. Moreover, P14 is able to visualize overloaded Aβ in both APP/PS1 and 5 × FAD transgenic mice in vivo. From the aspect of potential therapeutic effects, P14 administration inhibits Aβ aggregation and alleviates Aβ-induced neuronal damage in vitro, as well as reduces central Aβ deposition and ameliorates cognitive impairment in APP/PS1 transgenic mice in vivo. Finally, P14 is applied to monitor the progression of Aβ aggregation in the brain of 5 × FAD transgenic mice and the intervention effect itself by fluorescence imaging. In summary, the discovery of this fluorescent agent might provide important clues for the future development of theranostic drug candidates targeting Aβ aggregation in AD.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于 BODIPY 的新型治疗剂,用于脑 Aβ 的体内荧光成像和改善阿尔茨海默病转基因小鼠的 Aβ 相关疾病
β-淀粉样蛋白(Aβ)聚集越来越被认为是阿尔茨海默病(AD)进展的生物标志物和诱因。在此,我们介绍一种基于 BODIPY 结构开发的新型荧光探针 P14,它能够同时显示和抑制体内 Aβ 的聚集。P14 与 Aβ 聚集体有很高的结合亲和力,能选择性地标记 APP/PS1 小鼠脑片中的 Aβ 斑块。此外,P14 还能在 APP/PS1 和 5 × FAD 转基因小鼠体内观察到过载的 Aβ。从潜在的治疗效果来看,在体外服用 P14 可抑制 Aβ 的聚集,减轻 Aβ 诱导的神经元损伤;在体内服用 P14 可减少中枢 Aβ 沉积,改善 APP/PS1 转基因小鼠的认知功能障碍。最后,P14 被应用于通过荧光成像监测 5 × FAD 转基因小鼠脑内 Aβ 聚集的进展以及干预效果本身。总之,这种荧光剂的发现可能为未来开发针对AD中Aβ聚集的治疗药物候选物提供重要线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MedChemComm
MedChemComm BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
4.70
自引率
0.00%
发文量
0
审稿时长
2.2 months
期刊介绍: Research and review articles in medicinal chemistry and related drug discovery science; the official journal of the European Federation for Medicinal Chemistry. In 2020, MedChemComm will change its name to RSC Medicinal Chemistry. Issue 12, 2019 will be the last issue as MedChemComm.
期刊最新文献
Back cover Introduction to the themed collection in honour of Professor Christian Leumann Back cover Correction: computational design, synthesis, and assessment of 3-(4-(4-(1,3,4-oxadiazol-2-yl)-1H-imidazol-2-yl)phenyl)-1,2,4-oxadiazole derivatives as effective epidermal growth factor receptor inhibitors: a prospective strategy for anticancer therapy Introduction to the themed collection on ‘AI in Medicinal Chemistry’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1