Anatomically aware simulation of patient-specific glioblastoma xenografts

Adam A. Malik, Cecilia Krona, Soumi Kundu, Philip Gerlee, Sven Nelander
{"title":"Anatomically aware simulation of patient-specific glioblastoma xenografts","authors":"Adam A. Malik, Cecilia Krona, Soumi Kundu, Philip Gerlee, Sven Nelander","doi":"arxiv-2403.09182","DOIUrl":null,"url":null,"abstract":"Patient-derived cells (PDC) mouse xenografts are increasingly important tools\nin glioblastoma (GBM) research, essential to investigate case-specific growth\npatterns and treatment responses. Despite the central role of xenograft models\nin the field, few good simulation models are available to probe the dynamics of\ntumor growth and to support therapy design. We therefore propose a new\nframework for the patient-specific simulation of GBM in the mouse brain. Unlike\nexisting methods, our simulations leverage a high-resolution map of the mouse\nbrain anatomy to yield patient-specific results that are in good agreement with\nexperimental observations. To facilitate the fitting of our model to\nhistological data, we use Approximate Bayesian Computation. Because our model\nuses few parameters, reflecting growth, invasion and niche dependencies, it is\nwell suited for case comparisons and for probing treatment effects. We\ndemonstrate how our model can be used to simulate different treatment by\nperturbing the different model parameters. We expect in silico replicates of\nmouse xenograft tumors can improve the assessment of therapeutic outcomes and\nboost the statistical power of preclinical GBM studies.","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.09182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Patient-derived cells (PDC) mouse xenografts are increasingly important tools in glioblastoma (GBM) research, essential to investigate case-specific growth patterns and treatment responses. Despite the central role of xenograft models in the field, few good simulation models are available to probe the dynamics of tumor growth and to support therapy design. We therefore propose a new framework for the patient-specific simulation of GBM in the mouse brain. Unlike existing methods, our simulations leverage a high-resolution map of the mouse brain anatomy to yield patient-specific results that are in good agreement with experimental observations. To facilitate the fitting of our model to histological data, we use Approximate Bayesian Computation. Because our model uses few parameters, reflecting growth, invasion and niche dependencies, it is well suited for case comparisons and for probing treatment effects. We demonstrate how our model can be used to simulate different treatment by perturbing the different model parameters. We expect in silico replicates of mouse xenograft tumors can improve the assessment of therapeutic outcomes and boost the statistical power of preclinical GBM studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对患者特异性胶质母细胞瘤异种移植物进行解剖感知模拟
患者衍生细胞(PDC)小鼠异种移植在胶质母细胞瘤(GBM)研究中日益成为重要的工具,对于研究特定病例的生长模式和治疗反应至关重要。尽管异种移植模型在这一领域发挥着核心作用,但很少有好的模拟模型可用于探究肿瘤生长动态和支持治疗设计。因此,我们提出了一个新框架,用于在小鼠大脑中模拟特定患者的 GBM。与现有方法不同的是,我们的模拟利用了高分辨率的小鼠脑解剖图,得出了与实验观察结果非常一致的患者特异性结果。为了便于将我们的模型与组织学数据拟合,我们使用了近似贝叶斯计算方法。由于我们的模型使用的参数很少,反映的是生长、侵袭和生态位的依赖性,因此非常适合病例比较和治疗效果探查。我们展示了如何通过扰动不同的模型参数来模拟不同的治疗方法。我们希望小鼠异种移植肿瘤的硅学复制可以改善治疗效果评估,提高临床前 GBM 研究的统计能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry Dynamic landscapes and statistical limits on growth during cell fate specification (Un)buckling mechanics of epithelial monolayers under compression On the design and stability of cancer adaptive therapy cycles: deterministic and stochastic models Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1