Connecting continuum poroelasticity with discrete synthetic vascular trees for modelling liver tissue

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences Pub Date : 2024-03-06 DOI:10.1098/rspa.2023.0421
Adnan Ebrahem, Etienne Jessen, Marco F. P. ten Eikelder, Tarun Gangwar, Michał Mika, Dominik Schillinger
{"title":"Connecting continuum poroelasticity with discrete synthetic vascular trees for modelling liver tissue","authors":"Adnan Ebrahem, Etienne Jessen, Marco F. P. ten Eikelder, Tarun Gangwar, Michał Mika, Dominik Schillinger","doi":"10.1098/rspa.2023.0421","DOIUrl":null,"url":null,"abstract":"<p>The modelling of liver tissue across multiple length scales constitutes a significant challenge, primarily due to the multiphysics coupling of mechanical response and perfusion within the complex multiscale vascularization of the organ. In this paper, we present a modelling framework that connects continuum poroelasticity and discrete vascular tree structures to model liver tissue across disparate levels of the perfusion hierarchy. The connection is achieved through a series of modelling decisions, which include source terms in the pressure equation to model inflow from the supplying tree, pressure boundary conditions to model outflow into the draining tree, and contact conditions to model surrounding tissue. We investigate the numerical behaviour of our framework and apply it to a patient-specific full-scale liver problem that demonstrates its potential to help assess surgical liver resection procedures.</p>","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0421","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The modelling of liver tissue across multiple length scales constitutes a significant challenge, primarily due to the multiphysics coupling of mechanical response and perfusion within the complex multiscale vascularization of the organ. In this paper, we present a modelling framework that connects continuum poroelasticity and discrete vascular tree structures to model liver tissue across disparate levels of the perfusion hierarchy. The connection is achieved through a series of modelling decisions, which include source terms in the pressure equation to model inflow from the supplying tree, pressure boundary conditions to model outflow into the draining tree, and contact conditions to model surrounding tissue. We investigate the numerical behaviour of our framework and apply it to a patient-specific full-scale liver problem that demonstrates its potential to help assess surgical liver resection procedures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连接连续气孔弹性与离散合成血管树以模拟肝脏组织
对肝脏组织进行多长度尺度建模是一项重大挑战,这主要是由于在器官复杂的多尺度血管中,机械响应和灌注存在多物理耦合。在本文中,我们提出了一个建模框架,该框架将连续气孔弹性和离散血管树结构连接起来,为肝脏组织建立了一个跨越不同灌注层次的模型。这种连接是通过一系列建模决策实现的,其中包括压力方程中的源项,以模拟来自供应树的流入;压力边界条件,以模拟流入排水树的流出;以及接触条件,以模拟周围组织。我们对框架的数值行为进行了研究,并将其应用于针对特定患者的全尺寸肝脏问题,以展示其帮助评估外科肝脏切除手术的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
227
审稿时长
3.0 months
期刊介绍: Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.
期刊最新文献
On the well-posedness of Eringen’s non-local elasticity for harmonic plane wave problems On the stability of prestressed beams undergoing nonlinear flexural free oscillations A cluster of N -bubbles driven along a channel at high imposed driving pressure: film orientations and bubble pressures Enhanced interfacial capture with an elliptical cylinder A Comment on: ‘Wind tunnel evaluation of novel drafting formations for an elite marathon runner’ (2023), by Marro M et al.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1