Uma Rani, Sunil Kumar, Neeraj Dahiya, Kamna Solanki, Shanu Rakesh Kuttan, Sajid Shah, Momina Shaheen, Faizan Ahmad
{"title":"An optimized neural network with AdaHessian for cryptojacking attack prediction for Securing Crypto Exchange Operations of MEC applications","authors":"Uma Rani, Sunil Kumar, Neeraj Dahiya, Kamna Solanki, Shanu Rakesh Kuttan, Sajid Shah, Momina Shaheen, Faizan Ahmad","doi":"10.1186/s13677-024-00630-y","DOIUrl":null,"url":null,"abstract":"Bitcoin exchange security is crucial because of MEC's widespread use. Cryptojacking has compromised MEC app security and bitcoin exchange ecosystem functionality. This paper propose a cutting-edge neural network and AdaHessian optimization technique for cryptojacking prediction and defense. We provide a cutting-edge deep neural network (DNN) cryptojacking attack prediction approach employing pruning, post-training quantization, and AdaHessian optimization. To solve these problems, this paper apply pruning, post-training quantization, and AdaHessian optimization. A new framework for quick DNN training utilizing AdaHessian optimization can detect cryptojacking attempts with reduced computational cost. Pruning and post-training quantization improve the model for low-CPU on-edge devices. The proposed approach drastically decreases model parameters without affecting Cryptojacking attack prediction. The model has Recall 98.72%, Precision 98.91%, F1-Score 99.09%, MSE 0.0140, RMSE 0.0137, and MAE 0.0139. Our solution beats state-of-the-art approaches in precision, computational efficiency, and resource consumption, allowing more realistic, trustworthy, and cost-effective machine learning models. We address increasing cybersecurity issues holistically by completing the DNN optimization-security loop. Securing Crypto Exchange Operations delivers scalable and efficient Cryptojacking protection, improving machine learning, cybersecurity, and network management.","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":"133 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13677-024-00630-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Bitcoin exchange security is crucial because of MEC's widespread use. Cryptojacking has compromised MEC app security and bitcoin exchange ecosystem functionality. This paper propose a cutting-edge neural network and AdaHessian optimization technique for cryptojacking prediction and defense. We provide a cutting-edge deep neural network (DNN) cryptojacking attack prediction approach employing pruning, post-training quantization, and AdaHessian optimization. To solve these problems, this paper apply pruning, post-training quantization, and AdaHessian optimization. A new framework for quick DNN training utilizing AdaHessian optimization can detect cryptojacking attempts with reduced computational cost. Pruning and post-training quantization improve the model for low-CPU on-edge devices. The proposed approach drastically decreases model parameters without affecting Cryptojacking attack prediction. The model has Recall 98.72%, Precision 98.91%, F1-Score 99.09%, MSE 0.0140, RMSE 0.0137, and MAE 0.0139. Our solution beats state-of-the-art approaches in precision, computational efficiency, and resource consumption, allowing more realistic, trustworthy, and cost-effective machine learning models. We address increasing cybersecurity issues holistically by completing the DNN optimization-security loop. Securing Crypto Exchange Operations delivers scalable and efficient Cryptojacking protection, improving machine learning, cybersecurity, and network management.