Masato Kai, Shuichiro Hayashi, Ken Kashikawa, and Mitsuhiro Terakawa
{"title":"Temperature measurement and morphological/crystalline differences in the laser-induced carbonization of polydimethylsiloxane","authors":"Masato Kai, Shuichiro Hayashi, Ken Kashikawa, and Mitsuhiro Terakawa","doi":"10.1364/ome.514788","DOIUrl":null,"url":null,"abstract":"Laser-induced carbonization, which allows for the facile generation of graphitic carbon, is considered a promising technique for fabricating arbitrary conductive microstructures. The morphology and crystallinity of the resulting product are acknowledged to be significantly influenced by laser irradiation conditions. However, unlike discussions pertaining to furnaces where detailed considerations of applied temperature and resulting products are common, discussions on the process of laser-induced carbonization are limited. In recent years, reports have shown that using polydimethylsiloxane (PDMS) as a precursor material not only produces graphitic carbon but also results in the formation of silicon carbide. In this study, we utilized a thermographic camera to measure temperature changes during laser-induced carbonization, aiming to elucidate the correlation between PDMS temperature fluctuations and the morphology and crystallinity of the resulting graphitic carbon. The results demonstrate that the morphology and crystallinity of the graphitic carbon formed through laser-induced carbonization are not solely determined by the maximum temperature in the laser-irradiated area. The temperature changes during laser irradiation play a crucial role in the selective generation of these materials.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"82 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.514788","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Laser-induced carbonization, which allows for the facile generation of graphitic carbon, is considered a promising technique for fabricating arbitrary conductive microstructures. The morphology and crystallinity of the resulting product are acknowledged to be significantly influenced by laser irradiation conditions. However, unlike discussions pertaining to furnaces where detailed considerations of applied temperature and resulting products are common, discussions on the process of laser-induced carbonization are limited. In recent years, reports have shown that using polydimethylsiloxane (PDMS) as a precursor material not only produces graphitic carbon but also results in the formation of silicon carbide. In this study, we utilized a thermographic camera to measure temperature changes during laser-induced carbonization, aiming to elucidate the correlation between PDMS temperature fluctuations and the morphology and crystallinity of the resulting graphitic carbon. The results demonstrate that the morphology and crystallinity of the graphitic carbon formed through laser-induced carbonization are not solely determined by the maximum temperature in the laser-irradiated area. The temperature changes during laser irradiation play a crucial role in the selective generation of these materials.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to:
Artificially engineered optical structures
Biomaterials
Optical detector materials
Optical storage media
Materials for integrated optics
Nonlinear optical materials
Laser materials
Metamaterials
Nanomaterials
Organics and polymers
Soft materials
IR materials
Materials for fiber optics
Hybrid technologies
Materials for quantum photonics
Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.