{"title":"CAPRI-Q: The CAPRI resource evaluating the quality of predicted structures of protein complexes","authors":"","doi":"10.1016/j.jmb.2024.168540","DOIUrl":null,"url":null,"abstract":"<div><p>Protein interactions are essential for cellular processes. In recent years there has been significant progress in computational prediction of 3D structures of individual protein chains, with the best-performing algorithms reaching sub-Ångström accuracy. These techniques are now finding their way into the prediction of protein interactions, adding to the existing modeling approaches. The community-wide Critical Assessment of Predicted Interactions (CAPRI) has been a catalyst for the development of procedures for the structural modeling of protein assemblies by organizing blind prediction experiments. The predicted structures are assessed against unpublished experimentally determined structures using a set of metrics with proven robustness that have been established in the CAPRI community. In addition, several advanced benchmarking databases provide targets against which users can test docking and assembly modeling software. These include the Protein-Protein Docking Benchmark, the CAPRI Scoreset, and the <span>Dockground</span> database, all developed by members of the CAPRI community. Here we present CAPRI-Q, a stand-alone model quality assessment tool, which can be freely downloaded or used via a publicly available web server. This tool applies the CAPRI metrics to assess the quality of query structures against given target structures, along with other popular quality metrics such as DockQ, TM-score and <em>l</em>-DDT, and classifies the models according to the CAPRI model quality criteria. The tool can handle a variety of protein complex types including those involving peptides, nucleic acids, and oligosaccharides. The source code is freely available from <span><span>https://gitlab.in2p3.fr/cmsb-public/CAPRI-Q</span><svg><path></path></svg></span> and its web interface through the <span>Dockground</span> resource at <span><span>https://dockground.compbio.ku.edu/assessment/</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 17","pages":"Article 168540"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001359/pdfft?md5=4b997150389807ec96ba0668e678acea&pid=1-s2.0-S0022283624001359-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624001359","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein interactions are essential for cellular processes. In recent years there has been significant progress in computational prediction of 3D structures of individual protein chains, with the best-performing algorithms reaching sub-Ångström accuracy. These techniques are now finding their way into the prediction of protein interactions, adding to the existing modeling approaches. The community-wide Critical Assessment of Predicted Interactions (CAPRI) has been a catalyst for the development of procedures for the structural modeling of protein assemblies by organizing blind prediction experiments. The predicted structures are assessed against unpublished experimentally determined structures using a set of metrics with proven robustness that have been established in the CAPRI community. In addition, several advanced benchmarking databases provide targets against which users can test docking and assembly modeling software. These include the Protein-Protein Docking Benchmark, the CAPRI Scoreset, and the Dockground database, all developed by members of the CAPRI community. Here we present CAPRI-Q, a stand-alone model quality assessment tool, which can be freely downloaded or used via a publicly available web server. This tool applies the CAPRI metrics to assess the quality of query structures against given target structures, along with other popular quality metrics such as DockQ, TM-score and l-DDT, and classifies the models according to the CAPRI model quality criteria. The tool can handle a variety of protein complex types including those involving peptides, nucleic acids, and oligosaccharides. The source code is freely available from https://gitlab.in2p3.fr/cmsb-public/CAPRI-Q and its web interface through the Dockground resource at https://dockground.compbio.ku.edu/assessment/.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.