CoQ10 targeted hippocampal ferroptosis in a status epilepticus rat model.

IF 3.2 3区 生物学 Q3 CELL BIOLOGY Cell and Tissue Research Pub Date : 2024-06-01 Epub Date: 2024-03-19 DOI:10.1007/s00441-024-03880-z
Heba Fikry, Lobna A Saleh, Faten A Mahmoud, Sara Abdel Gawad, Hadwa Ali Abd-Alkhalek
{"title":"CoQ10 targeted hippocampal ferroptosis in a status epilepticus rat model.","authors":"Heba Fikry, Lobna A Saleh, Faten A Mahmoud, Sara Abdel Gawad, Hadwa Ali Abd-Alkhalek","doi":"10.1007/s00441-024-03880-z","DOIUrl":null,"url":null,"abstract":"<p><p>Status epilepticus (SE), the most severe form of epilepsy, leads to brain damage. Uncertainty persists about the mechanisms that lead to the pathophysiology of epilepsy and the death of neurons. Overloading of intracellular iron ions has recently been identified as the cause of a newly recognized form of controlled cell death called ferroptosis. Inhibiting ferroptosis has shown promise as a treatment for epilepsy, according to recent studies. So, the current study aimed to assess the possible antiepileptic impact of CoQ10 either alone or with the standard antiepileptic drug sodium valproate (SVP) and to evaluate the targeted effect of COQ10 on hippocampal oxidative stress and ferroptosis in a SE rat model. Using a lithium-pilocarpine rat model of epilepsy, we evaluated the effect of SVP, CoQ10, or both on seizure severity, histological, and immunohistochemical of the hippocampus. Furthermore, due to the essential role of oxidative stress and lipid peroxidation in inducing ferroptosis, we evaluated malonaldehyde (MDA), reduced glutathione (GSH), glutathione peroxidase 4 (GPX4), and ferritin in tissue homogenate. Our work illustrated that ferroptosis occurs in murine models of lithium-pilocarpine-induced seizures (epileptic group). Nissl staining revealed significant neurodegeneration. A significant increase in the number of astrocytes stained with an astrocyte-specific marker was observed in the hippocampus. Effective seizure relief can be achieved in the seizure model by administering CoQ10 alone compared to SVP. This was accomplished by lowering ferritin levels and increasing GPX4, reducing MDA, and increasing GSH in the hippocampus tissue homogenate. In addition, the benefits of SVP therapy for regulating iron stores, GPX4, and oxidative stress markers were amplified by incorporating CoQ10 as compared to SVP alone. It was concluded that CoQ10 alone has a more beneficial effect than SVP alone in restoring histological structures and has a targeted effect on hippocampal oxidative stress and ferroptosis. In addition, COQ10 could be useful as an adjuvant to SVP in protecting against oxidative damage and ferroptosis-related damage that result from epileptic seizures.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144258/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-024-03880-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Status epilepticus (SE), the most severe form of epilepsy, leads to brain damage. Uncertainty persists about the mechanisms that lead to the pathophysiology of epilepsy and the death of neurons. Overloading of intracellular iron ions has recently been identified as the cause of a newly recognized form of controlled cell death called ferroptosis. Inhibiting ferroptosis has shown promise as a treatment for epilepsy, according to recent studies. So, the current study aimed to assess the possible antiepileptic impact of CoQ10 either alone or with the standard antiepileptic drug sodium valproate (SVP) and to evaluate the targeted effect of COQ10 on hippocampal oxidative stress and ferroptosis in a SE rat model. Using a lithium-pilocarpine rat model of epilepsy, we evaluated the effect of SVP, CoQ10, or both on seizure severity, histological, and immunohistochemical of the hippocampus. Furthermore, due to the essential role of oxidative stress and lipid peroxidation in inducing ferroptosis, we evaluated malonaldehyde (MDA), reduced glutathione (GSH), glutathione peroxidase 4 (GPX4), and ferritin in tissue homogenate. Our work illustrated that ferroptosis occurs in murine models of lithium-pilocarpine-induced seizures (epileptic group). Nissl staining revealed significant neurodegeneration. A significant increase in the number of astrocytes stained with an astrocyte-specific marker was observed in the hippocampus. Effective seizure relief can be achieved in the seizure model by administering CoQ10 alone compared to SVP. This was accomplished by lowering ferritin levels and increasing GPX4, reducing MDA, and increasing GSH in the hippocampus tissue homogenate. In addition, the benefits of SVP therapy for regulating iron stores, GPX4, and oxidative stress markers were amplified by incorporating CoQ10 as compared to SVP alone. It was concluded that CoQ10 alone has a more beneficial effect than SVP alone in restoring histological structures and has a targeted effect on hippocampal oxidative stress and ferroptosis. In addition, COQ10 could be useful as an adjuvant to SVP in protecting against oxidative damage and ferroptosis-related damage that result from epileptic seizures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在癫痫状态大鼠模型中以 CoQ10 为靶标的海马铁突变。
癫痫状态(SE)是最严重的癫痫形式,会导致脑损伤。导致癫痫和神经元死亡的病理生理学机制一直存在不确定性。最近,细胞内铁离子超载被确定为一种新的公认的受控细胞死亡形式--铁变态反应的原因。最近的研究表明,抑制铁突变有望成为癫痫的一种治疗方法。因此,本研究旨在评估辅酶Q10单独或与标准抗癫痫药物丙戊酸钠(SVP)一起使用可能产生的抗癫痫影响,并评估辅酶Q10在SE大鼠模型中对海马氧化应激和铁突变的靶向作用。我们使用锂-匹洛卡品大鼠癫痫模型,评估了 SVP、CoQ10 或两者对癫痫发作严重程度、海马组织学和免疫组化的影响。此外,由于氧化应激和脂质过氧化在诱导铁变态反应中的重要作用,我们评估了组织匀浆中的丙二醛(MDA)、还原型谷胱甘肽(GSH)、谷胱甘肽过氧化物酶 4(GPX4)和铁蛋白。我们的研究表明,锂-匹洛卡品诱发癫痫发作的小鼠模型(癫痫组)会出现铁蛋白沉积。Nissl 染色显示了明显的神经变性。在海马中,用星形胶质细胞特异性标记物染色的星形胶质细胞数量明显增加。与 SVP 相比,在癫痫发作模型中单独施用 CoQ10 可有效缓解癫痫发作。这是通过降低海马组织匀浆中的铁蛋白水平、增加 GPX4、降低 MDA 和增加 GSH 来实现的。此外,与单独使用 SVP 相比,CoQ10 的加入扩大了 SVP 治疗在调节铁储存、GPX4 和氧化应激指标方面的优势。结论是,在恢复组织学结构方面,单独使用辅酶Q10比单独使用SVP更有益处,而且对海马氧化应激和铁变态反应有针对性的作用。此外,COQ10还可作为SVP的辅助药物,防止癫痫发作造成的氧化损伤和铁突变相关损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
期刊最新文献
Exploring the contribution of Zfp521/ZNF521 on primary hematopoietic stem/progenitor cells and leukemia progression. Olfactory and gustatory chemical sensor systems in the African turquoise killifish: Insights from morphology. Regulation of the gap junction interplay during postnatal development in the rat epididymis. Revisiting the human umbilical cord epithelium. An atypical epithelial sheath with distinctive features. Mechanical stimulation promotes the maturation of cardiomyocyte-like cells from P19 cells and the function in a mouse model of myocardial infarction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1