Green Analytical Toxicology procedure for determination of ketamine, its metabolites and analogues in oral fluid samples using dispersive liquid-liquid microextraction (DLLME).

IF 2.3 3区 医学 Q3 CHEMISTRY, ANALYTICAL Journal of analytical toxicology Pub Date : 2024-06-11 DOI:10.1093/jat/bkae018
Juliana Ribeiro Ibiapina Leitão Oliveira, Leonardo Costalonga Rodrigues, Júlia Martinelli Magalhães Kahl, Débora Zorrón Berlinck, Jose Luiz Costa
{"title":"Green Analytical Toxicology procedure for determination of ketamine, its metabolites and analogues in oral fluid samples using dispersive liquid-liquid microextraction (DLLME).","authors":"Juliana Ribeiro Ibiapina Leitão Oliveira, Leonardo Costalonga Rodrigues, Júlia Martinelli Magalhães Kahl, Débora Zorrón Berlinck, Jose Luiz Costa","doi":"10.1093/jat/bkae018","DOIUrl":null,"url":null,"abstract":"<p><p>New psychoactive substances (NPS) are often synthesized via small changes in the molecular structure, producing drugs whose effect and potency are not yet fully known. Ketamine is one of the oldest NPS, with therapeutic use in human and veterinary medicine authorized in several countries, being metabolized mainly into norketamine and 6-hydroxy-norketamine. Furthermore, two structural analogues of ketamine have recently been identified, deschloroketamine and 2-fluorodeschloroketamine, marketed as drugs of abuse. To comply with Green Analytical Toxicology (GAT) fundamentals, miniaturized techniques such as dispersive liquid-liquid microextraction (DLLME) were employed to determine toxicants in biological fluids. An analytical method for determining ketamine, its metabolites and its analogues in oral fluid was fully developed and validated by using DLLME and liquid chromatography-tandem mass spectrometry (LC-MS-MS). The extraction parameters were optimized by multivariate analysis, obtaining the best conditions with 200 μL of sample, 100 μL of methanol as dispersive solvent and 50 μL of chloroform as extractor solvent. Linearity was obtained from 10 to 1,000 ng/mL, with limit of detection (LOD) and lower limit of quantification (LLOQ) at 10 ng/mL. Imprecision (% relative standard deviation) and bias (%) were less than 8.2% and 9.5%, respectively. The matrix effect did not exceed 10.6%, and the recovery values varied from 24% to 42%. No matrix interference and good selectivity in the evaluation of 10 different sources of oral fluid and 42 drugs at 500 ng/mL, respectively, were observed. The method was applied in the analysis of 29 authentic oral fluid samples and had its green characteristic evaluated by three different tools: the Green Analytical Procedure Index (GAPI), the Analytical Eco-Scale and the Analytical GREEnness (AGREE) metrics.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of analytical toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jat/bkae018","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

New psychoactive substances (NPS) are often synthesized via small changes in the molecular structure, producing drugs whose effect and potency are not yet fully known. Ketamine is one of the oldest NPS, with therapeutic use in human and veterinary medicine authorized in several countries, being metabolized mainly into norketamine and 6-hydroxy-norketamine. Furthermore, two structural analogues of ketamine have recently been identified, deschloroketamine and 2-fluorodeschloroketamine, marketed as drugs of abuse. To comply with Green Analytical Toxicology (GAT) fundamentals, miniaturized techniques such as dispersive liquid-liquid microextraction (DLLME) were employed to determine toxicants in biological fluids. An analytical method for determining ketamine, its metabolites and its analogues in oral fluid was fully developed and validated by using DLLME and liquid chromatography-tandem mass spectrometry (LC-MS-MS). The extraction parameters were optimized by multivariate analysis, obtaining the best conditions with 200 μL of sample, 100 μL of methanol as dispersive solvent and 50 μL of chloroform as extractor solvent. Linearity was obtained from 10 to 1,000 ng/mL, with limit of detection (LOD) and lower limit of quantification (LLOQ) at 10 ng/mL. Imprecision (% relative standard deviation) and bias (%) were less than 8.2% and 9.5%, respectively. The matrix effect did not exceed 10.6%, and the recovery values varied from 24% to 42%. No matrix interference and good selectivity in the evaluation of 10 different sources of oral fluid and 42 drugs at 500 ng/mL, respectively, were observed. The method was applied in the analysis of 29 authentic oral fluid samples and had its green characteristic evaluated by three different tools: the Green Analytical Procedure Index (GAPI), the Analytical Eco-Scale and the Analytical GREEnness (AGREE) metrics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用分散液-液微萃取法(DLLME)测定口腔液样品中氯胺酮及其代谢物和类似物的绿色毒理学分析程序。
新的精神活性物质(NPS)通常是通过分子结构的微小变化合成的,其产生的药物的效果和效力尚不完全清楚。氯胺酮是最古老的新型精神活性物质之一,多个国家已批准其在人类和兽医领域的治疗用途,主要代谢为氯胺酮和 6-羟基氯胺酮。此外,最近还发现了氯胺酮的两种结构类似物,即去氯氯胺酮和 2-氟去氯氯胺酮,这两种物质已作为滥用药物在市场上销售。为了符合绿色分析毒理学(GAT)的基本原则,我们采用了分散液-液微萃取(DLLME)等微型化技术来测定生物液体中的毒物。利用分散液-液微萃取技术和液相色谱-串联质谱(LC-MS-MS)技术,全面开发并验证了测定口服液中氯胺酮及其代谢物和类似物的分析方法。通过多元分析优化了萃取参数,获得了最佳的萃取条件:200 μL 样品、100 μL 甲醇作为分散溶剂、50 μL 氯仿作为萃取溶剂。线性范围为 10 至 1,000 ng/mL,检出限(LOD)和定量下限(LLOQ)均为 10 ng/mL。不精确度(相对标准偏差百分比)和偏差(百分比)分别低于 8.2% 和 9.5%。基质效应不超过 10.6%,回收率从 24% 到 42% 不等。在对10种不同来源的口服液和42种药物(浓度分别为500 ng/mL)进行评价时,未观察到基质干扰,选择性良好。该方法应用于 29 种真实口服液样品的分析,并通过三种不同的工具对其绿色特性进行了评估:绿色分析程序指数(GAPI)、分析生态尺度(Analytical Eco-Scale)和分析环境优美度(AGREE)指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
20.00%
发文量
92
审稿时长
6-12 weeks
期刊介绍: The Journal of Analytical Toxicology (JAT) is an international toxicology journal devoted to the timely dissemination of scientific communications concerning potentially toxic substances and drug identification, isolation, and quantitation. Since its inception in 1977, the Journal of Analytical Toxicology has striven to present state-of-the-art techniques used in toxicology labs. The peer-review process provided by the distinguished members of the Editorial Advisory Board ensures the high-quality and integrity of articles published in the Journal of Analytical Toxicology. Timely presentation of the latest toxicology developments is ensured through Technical Notes, Case Reports, and Letters to the Editor.
期刊最新文献
Long-term stability of sufentanil quantified by UPLC-MS-MS in human plasma frozen for 11 years at -20°C. Double Designers: Detection of Bromazolam and Metonitazene in Postmortem Casework. Liquid-Liquid Extraction Solvent Selection for Comparing Illegal Drugs in Whole Blood and Dried Blood Spot with LC-MS/MS. Detection of "smoke powder" etomidate and its metabolite etomidate acid in blood and urine by UHPLC-MS/MS: Application in authentic cases. The Rise of Bromazolam in Postmortem Cases from Travis County, Texas and Surrounding Areas: 2021-2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1