Understanding Propofol's Protective Mechanism in Tubular Epithelial Cells: Mitigating Pyroptosis via the miR-143-3p/ATPase Na + /K + Transporting Subunit Alpha 2 Pathway in Renal Ischemia-Reperfusion.
Hongjun Kan, Miaomiao Zhao, Wei Wang, Baozhong Sun
{"title":"Understanding Propofol's Protective Mechanism in Tubular Epithelial Cells: Mitigating Pyroptosis via the miR-143-3p/ATPase Na + /K + Transporting Subunit Alpha 2 Pathway in Renal Ischemia-Reperfusion.","authors":"Hongjun Kan, Miaomiao Zhao, Wei Wang, Baozhong Sun","doi":"10.1007/s12033-024-01116-7","DOIUrl":null,"url":null,"abstract":"<p><p>Propofol (Pro), a prevalent intravenous anesthetic, has recently been recognized for its potential in mitigating ischemia-reperfusion (I/R) injuries. Despite a plethora of evidence suggesting the beneficial effects of low-dose Pro in renal I/R injury (RI/R), its role in modulating pyroptosis in renal tubular epithelial cells consequent to RI/R has not been thoroughly elucidated. In our investigation, we explored the therapeutic potential of Pro against pyroptosis in renal tubular epithelial cells under the duress of RI/R, employing both in vivo and in vitro models, while deciphering the intricate molecular pathways involved. Our results demonstrate an elevation in the expression of miR-143-3p, contrasted by a diminution in ATPase Na + /K + Transporting Subunit Alpha 2 (ATP1A2) under RI/R conditions. Pro effectively mitigates apoptosis in renal tubular epithelial cells induced by RI/R, principally characterized by the inhibition of pro-inflammatory cytokines interleukin (IL-)-1β and IL-18, enhancement of cellular viability, reduction in the ratio of pyroptotic cells, and suppression of nucleotide-binding domain and leucine-rich repeat-related family, pyrin domain containing 3 inflammasome activation along with the expression of cleaved caspase-1, and gasdermin D. Both knockdown and overexpression studies of miR-143-3p revealed its pivotal role in modulating RI/R-induced tubular cell pyroptosis. Notably, Pro's capacity to inhibit pyroptosis in renal tubular epithelial cells was found to be reversible following ATP1A2 knockdown. Furthermore, our study unveils miR-143-3p as a targeted regulator of ATP1A2 expression. From a mechanistic standpoint, Pro's therapeutic efficacy is attributed to its regulatory influence on miR-143-3p and ATP1A2 expression levels. In conclusion, our findings pioneer the understanding that Pro can significantly ameliorate pyroptosis in renal tubular epithelial cells in the context of RI/R, predominantly through the modulation of the miR-143-3p/ATP1A2 axis. This novel insight furnishes robust empirical support for the development of targeted therapeutics and clinical strategies in addressing RI/R.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"1165-1177"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01116-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Propofol (Pro), a prevalent intravenous anesthetic, has recently been recognized for its potential in mitigating ischemia-reperfusion (I/R) injuries. Despite a plethora of evidence suggesting the beneficial effects of low-dose Pro in renal I/R injury (RI/R), its role in modulating pyroptosis in renal tubular epithelial cells consequent to RI/R has not been thoroughly elucidated. In our investigation, we explored the therapeutic potential of Pro against pyroptosis in renal tubular epithelial cells under the duress of RI/R, employing both in vivo and in vitro models, while deciphering the intricate molecular pathways involved. Our results demonstrate an elevation in the expression of miR-143-3p, contrasted by a diminution in ATPase Na + /K + Transporting Subunit Alpha 2 (ATP1A2) under RI/R conditions. Pro effectively mitigates apoptosis in renal tubular epithelial cells induced by RI/R, principally characterized by the inhibition of pro-inflammatory cytokines interleukin (IL-)-1β and IL-18, enhancement of cellular viability, reduction in the ratio of pyroptotic cells, and suppression of nucleotide-binding domain and leucine-rich repeat-related family, pyrin domain containing 3 inflammasome activation along with the expression of cleaved caspase-1, and gasdermin D. Both knockdown and overexpression studies of miR-143-3p revealed its pivotal role in modulating RI/R-induced tubular cell pyroptosis. Notably, Pro's capacity to inhibit pyroptosis in renal tubular epithelial cells was found to be reversible following ATP1A2 knockdown. Furthermore, our study unveils miR-143-3p as a targeted regulator of ATP1A2 expression. From a mechanistic standpoint, Pro's therapeutic efficacy is attributed to its regulatory influence on miR-143-3p and ATP1A2 expression levels. In conclusion, our findings pioneer the understanding that Pro can significantly ameliorate pyroptosis in renal tubular epithelial cells in the context of RI/R, predominantly through the modulation of the miR-143-3p/ATP1A2 axis. This novel insight furnishes robust empirical support for the development of targeted therapeutics and clinical strategies in addressing RI/R.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.