Engineering Escherichia coli for high-yielding 2,5-Dimethylpyrazine synthesis from L-Threonine by reconstructing metabolic pathways and enhancing cofactors regeneration

IF 6.1 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology for Biofuels Pub Date : 2024-03-18 DOI:10.1186/s13068-024-02487-4
Xin-Xin Liu, Yao Wang, Jian-Hui Zhang, Yun-Feng Lu, Zi-Xing Dong, Chao Yue, Xian-Qing Huang, Si-Pu Zhang, Dan-Dan Li, Lun-Guang Yao, Cun-Duo Tang
{"title":"Engineering Escherichia coli for high-yielding 2,5-Dimethylpyrazine synthesis from L-Threonine by reconstructing metabolic pathways and enhancing cofactors regeneration","authors":"Xin-Xin Liu,&nbsp;Yao Wang,&nbsp;Jian-Hui Zhang,&nbsp;Yun-Feng Lu,&nbsp;Zi-Xing Dong,&nbsp;Chao Yue,&nbsp;Xian-Qing Huang,&nbsp;Si-Pu Zhang,&nbsp;Dan-Dan Li,&nbsp;Lun-Guang Yao,&nbsp;Cun-Duo Tang","doi":"10.1186/s13068-024-02487-4","DOIUrl":null,"url":null,"abstract":"<div><p>2,5-Dimethylpyrazine (2,5-DMP) is important pharmaceutical raw material and food flavoring agent. Recently, engineering microbes to produce 2,5-DMP has become an attractive alternative to chemical synthesis approach. In this study, metabolic engineering strategies were used to optimize the modified <i>Escherichia coli</i> BL21 (DE3) strain for efficient synthesis of 2,5-DMP using <i>L</i>-threonine dehydrogenase (<i>Ec</i>TDH) from <i>Escherichia coli</i> BL21, NADH oxidase (<i>Eh</i>NOX) from <i>Enterococcus hirae</i>, aminoacetone oxidase (<i>Sc</i>AAO) from <i>Streptococcus cristatus</i> and <i>L</i>-threonine transporter protein (<i>Ec</i>SstT) from <i>Escherichia coli</i> BL21, respectively. We further optimized the reaction conditions for synthesizing 2,5-DMP. In optimized conditions, the modified strain can convert <i>L</i>-threonine to obtain 2,5-DMP with a yield of 2897.30 mg/L. Therefore, the strategies used in this study contribute to the development of high-level cell factories for 2,5-DMP.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02487-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02487-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

2,5-Dimethylpyrazine (2,5-DMP) is important pharmaceutical raw material and food flavoring agent. Recently, engineering microbes to produce 2,5-DMP has become an attractive alternative to chemical synthesis approach. In this study, metabolic engineering strategies were used to optimize the modified Escherichia coli BL21 (DE3) strain for efficient synthesis of 2,5-DMP using L-threonine dehydrogenase (EcTDH) from Escherichia coli BL21, NADH oxidase (EhNOX) from Enterococcus hirae, aminoacetone oxidase (ScAAO) from Streptococcus cristatus and L-threonine transporter protein (EcSstT) from Escherichia coli BL21, respectively. We further optimized the reaction conditions for synthesizing 2,5-DMP. In optimized conditions, the modified strain can convert L-threonine to obtain 2,5-DMP with a yield of 2897.30 mg/L. Therefore, the strategies used in this study contribute to the development of high-level cell factories for 2,5-DMP.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过重建新陈代谢途径和加强辅助因子再生,改造大肠杆菌,从 L-苏氨酸中高产合成 2,5-二甲基吡嗪。
2,5-二甲基吡嗪(2,5-DMP)是重要的医药原料和食品调味剂。最近,利用微生物工程技术生产 2,5-二甲基吡嗪已成为化学合成方法的一种有吸引力的替代方法。本研究采用代谢工程策略,分别利用大肠杆菌 BL21 的 L-苏氨酸脱氢酶(EcTDH)、平滑肠球菌的 NADH 氧化酶(EhNOX)、皱褶链球菌的氨基丙酮氧化酶(SCAAO)和大肠杆菌 BL21 的 L-苏氨酸转运蛋白(EcSstT),优化改造大肠杆菌 BL21(DE3)菌株,以高效合成 2,5-DMP。我们进一步优化了合成 2,5-DMP 的反应条件。在优化条件下,改良菌株可将 L-苏氨酸转化为 2,5-DMP,产率达 2897.30 mg/L。因此,本研究采用的策略有助于开发 2,5-二羟甲基丙烷的高级细胞工厂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology for Biofuels
Biotechnology for Biofuels 工程技术-生物工程与应用微生物
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass. Biotechnology for Biofuels focuses on the following areas: • Development of terrestrial plant feedstocks • Development of algal feedstocks • Biomass pretreatment, fractionation and extraction for biological conversion • Enzyme engineering, production and analysis • Bacterial genetics, physiology and metabolic engineering • Fungal/yeast genetics, physiology and metabolic engineering • Fermentation, biocatalytic conversion and reaction dynamics • Biological production of chemicals and bioproducts from biomass • Anaerobic digestion, biohydrogen and bioelectricity • Bioprocess integration, techno-economic analysis, modelling and policy • Life cycle assessment and environmental impact analysis
期刊最新文献
Sequential pretreatment with hydroxyl radical and manganese peroxidase for the efficient enzymatic saccharification of corn stover Enhancement of non-oleaginous green microalgae Ulothrix for bio-fixing CO2 and producing biofuels by ARTP mutagenesis Potential, economic and ecological benefits of sweet sorghum bio-industry in China Production and characterization of novel/chimeric sophorose–rhamnose biosurfactants by introducing heterologous rhamnosyltransferase genes into Starmerella bombicola Simultaneous saccharification and fermentation for d-lactic acid production using a metabolically engineered Escherichia coli adapted to high temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1