The biological cropping hypothesis over evolutionary time: an experimental test

IF 1.2 4区 环境科学与生态学 Q4 ECOLOGY Theoretical Ecology Pub Date : 2024-03-20 DOI:10.1007/s12080-024-00579-3
Euan N. Furness, Mark D. Sutton
{"title":"The biological cropping hypothesis over evolutionary time: an experimental test","authors":"Euan N. Furness, Mark D. Sutton","doi":"10.1007/s12080-024-00579-3","DOIUrl":null,"url":null,"abstract":"<p>Ecological disturbance has been proposed to have a variety of effects on biodiversity. These mechanisms are well studied over shorter timescales through experimental manipulation of ecosystems, but the effect of disturbance on longer timescales, where evolutionary processes operate, is less well understood. This is at least in part because evolutionary processes are too slow to observe in experimental manipulations of ecosystems. Here, we use the Rapid Evolutionary Simulator system (REvoSim) to solve this problem. REvoSim is a spatially explicit, agent-based simulation tool that models both ecological and evolutionary processes and is capable of simulating many thousands of generations of evolution per hour in a population of up to 1 million organisms. We use REvoSim to evaluate the biological cropping hypothesis, which predicts that the non-selective culling of organisms from populations (“cropping”) can enhance diversity in those populations over long timescales by reducing the homogenising effects of competitive exclusion. Our experiments demonstrate that cropping alone <i>can</i> increase diversity within populations under certain circumstances: those where it has the net effect of reducing the selection pressure acting on those populations. However, intense cropping pressure may <i>increase</i> the selection pressure on organisms to reproduce rapidly, potentially offsetting the effects of reduced competitive exclusion on diversity. We also show that cropping alone is not sufficient to result in reproductive isolation within populations. This implies that, while cropping can maintain a high species diversity within an ecosystem, additional mechanisms must be invoked to generate that high diversity in the first instance.</p>","PeriodicalId":51198,"journal":{"name":"Theoretical Ecology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12080-024-00579-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ecological disturbance has been proposed to have a variety of effects on biodiversity. These mechanisms are well studied over shorter timescales through experimental manipulation of ecosystems, but the effect of disturbance on longer timescales, where evolutionary processes operate, is less well understood. This is at least in part because evolutionary processes are too slow to observe in experimental manipulations of ecosystems. Here, we use the Rapid Evolutionary Simulator system (REvoSim) to solve this problem. REvoSim is a spatially explicit, agent-based simulation tool that models both ecological and evolutionary processes and is capable of simulating many thousands of generations of evolution per hour in a population of up to 1 million organisms. We use REvoSim to evaluate the biological cropping hypothesis, which predicts that the non-selective culling of organisms from populations (“cropping”) can enhance diversity in those populations over long timescales by reducing the homogenising effects of competitive exclusion. Our experiments demonstrate that cropping alone can increase diversity within populations under certain circumstances: those where it has the net effect of reducing the selection pressure acting on those populations. However, intense cropping pressure may increase the selection pressure on organisms to reproduce rapidly, potentially offsetting the effects of reduced competitive exclusion on diversity. We also show that cropping alone is not sufficient to result in reproductive isolation within populations. This implies that, while cropping can maintain a high species diversity within an ecosystem, additional mechanisms must be invoked to generate that high diversity in the first instance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
进化过程中的生物种植假说:实验验证
生态干扰被认为会对生物多样性产生多种影响。通过对生态系统的实验操作,这些机制在较短的时间尺度上得到了很好的研究,但对于扰动在较长时间尺度上的影响,即进化过程的作用,却了解得不多。这至少在一定程度上是因为进化过程太慢,无法在生态系统的实验操作中观察到。在这里,我们利用快速进化模拟系统(REvoSim)来解决这个问题。REvoSim 是一种空间明确、基于代理的模拟工具,可模拟生态和进化过程,每小时可在多达 100 万个生物种群中模拟数千代的进化过程。我们使用 REvoSim 对生物裁剪假说进行了评估,该假说认为,对种群中的生物进行非选择性裁剪("裁剪")可以通过减少竞争排斥的同质化效应,在较长的时间尺度内提高这些种群的多样性。我们的实验证明,在某些情况下,仅靠种植就能提高种群内的多样性:在这些情况下,种植的净效应是降低作用于这些种群的选择压力。然而,高强度的耕作压力可能会增加生物快速繁殖的选择压力,从而有可能抵消竞争排斥减少对多样性的影响。我们还发现,种植本身并不足以导致种群内部的生殖隔离。这意味着,虽然耕作可以在生态系统中维持较高的物种多样性,但必须首先采用其他机制来产生较高的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Theoretical Ecology
Theoretical Ecology 环境科学-生态学
CiteScore
3.30
自引率
6.20%
发文量
23
审稿时长
>12 weeks
期刊介绍: Theoretical Ecology publishes innovative research in theoretical ecology, broadly defined. Papers should use theoretical approaches to answer questions of ecological interest and appeal to and be readable by a broad audience of ecologists. Work that uses mathematical, statistical, computational, or conceptual approaches is all welcomed, provided that the goal is to increase ecological understanding. Papers that only use existing approaches to analyze data, or are only mathematical analyses that do not further ecological understanding, are not appropriate. Work that bridges disciplinary boundaries, such as the intersection between quantitative social sciences and ecology, or physical influences on ecological processes, will also be particularly welcome. All areas of theoretical ecology, including ecophysiology, population ecology, behavioral ecology, evolutionary ecology, ecosystem ecology, community ecology, and ecosystem and landscape ecology are all appropriate. Theoretical papers that focus on applied ecological questions are also of particular interest.
期刊最新文献
Modeling the interactive effects of sea surface temperature, fishing effort, and spatial closures on reef fish populations Neutral speciation in realistic populations Rainfall variability and deciduous-evergreen coexistence in tropical forests Impact of population behavioural responses on the critical community size of infectious diseases On the mathematical properties of spatial Rao’s Q to compute ecosystem heterogeneity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1