Negative Coupling: The Coincidence of Premating Isolating Barriers Can Reduce Reproductive Isolation

IF 6.9 2区 生物学 Q1 CELL BIOLOGY Cold Spring Harbor perspectives in biology Pub Date : 2024-03-19 DOI:10.1101/cshperspect.a041435
Thomas G. Aubier, Michael Kopp, Isaac J. Linn, Oscar Puebla, Marina Rafajlović, Maria R. Servedio
{"title":"Negative Coupling: The Coincidence of Premating Isolating Barriers Can Reduce Reproductive Isolation","authors":"Thomas G. Aubier, Michael Kopp, Isaac J. Linn, Oscar Puebla, Marina Rafajlović, Maria R. Servedio","doi":"10.1101/cshperspect.a041435","DOIUrl":null,"url":null,"abstract":"Speciation can be mediated by a variety of reproductive barriers, and the interaction among different barriers has often been shown to enhance overall reproductive isolation, a process referred to as “coupling.” Here, we analyze a population genetics model to study the establishment of linkage disequilibrium (LD) among loci involved in multiple premating barriers, an aspect that has received little theoretical attention to date. We consider a simple genetic framework underlying two distinct premating barriers, each encoded by a preference locus and its associated mating trait locus. We show that their interaction can lead to a decrease in overall reproductive isolation relative to a situation with a single barrier, a process we call “negative coupling.” More specifically, in our model, negative coupling results either from sexual selection that reduces divergence at all loci, or from reduced LD that occurs because the presence of many females with “mismatched” preferences causes the mating success of recombinant males to become high. Interestingly, the latter effect may even cause LD among preference loci to become negative when recombination rates among loci are low. We conclude that coincident reproductive barriers may not necessarily reinforce each other, and that the underlying loci may not necessarily develop a positive association.","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":"156 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041435","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Speciation can be mediated by a variety of reproductive barriers, and the interaction among different barriers has often been shown to enhance overall reproductive isolation, a process referred to as “coupling.” Here, we analyze a population genetics model to study the establishment of linkage disequilibrium (LD) among loci involved in multiple premating barriers, an aspect that has received little theoretical attention to date. We consider a simple genetic framework underlying two distinct premating barriers, each encoded by a preference locus and its associated mating trait locus. We show that their interaction can lead to a decrease in overall reproductive isolation relative to a situation with a single barrier, a process we call “negative coupling.” More specifically, in our model, negative coupling results either from sexual selection that reduces divergence at all loci, or from reduced LD that occurs because the presence of many females with “mismatched” preferences causes the mating success of recombinant males to become high. Interestingly, the latter effect may even cause LD among preference loci to become negative when recombination rates among loci are low. We conclude that coincident reproductive barriers may not necessarily reinforce each other, and that the underlying loci may not necessarily develop a positive association.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
负耦合:预产期隔离障碍的巧合可以减少生殖隔离
物种分化可由多种生殖障碍促成,而不同障碍之间的相互作用往往被证明会加强整体的生殖隔离,这一过程被称为 "耦合"。在这里,我们分析了一个种群遗传学模型,以研究涉及多重交配前障碍的位点之间的连锁不平衡(LD)的建立,迄今为止,这方面的理论关注还很少。我们考虑了一个简单的遗传学框架,其中包含两个不同的交配前障碍,每个障碍由一个偏好基因座及其相关的交配性状基因座编码。我们的研究表明,相对于只有单一障碍的情况,它们之间的相互作用会导致整体生殖隔离的降低,我们将这一过程称为 "负耦合"。更具体地说,在我们的模型中,负耦合要么是由于性选择降低了所有位点上的差异,要么是由于许多具有 "不匹配 "偏好的雌性的存在导致重组雄性的交配成功率变得很高,从而降低了LD。有趣的是,当基因位点间的重组率较低时,后一种效应甚至可能导致偏好基因位点间的LD变为负值。我们的结论是,重合的生殖障碍不一定会相互加强,而且相关基因位点也不一定会形成正相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.00
自引率
1.40%
发文量
56
审稿时长
3-8 weeks
期刊介绍: Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.
期刊最新文献
Mechanisms of Alternative Lengthening of Telomeres. Rediscovering and Unrediscovering Gregor Mendel: His Life, Times, and Intellectual Context. Teaching School Genetics in the 2020s: Why "Naive" Mendelian Genetics Has to Go. The Role of Microhomology-Mediated End Joining (MMEJ) at Dysfunctional Telomeres. Modeling the Emergence of Circuit Organization and Function during Development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1