Game-Based Low Complexity and Near Optimal Task Offloading for Mobile Blockchain Systems

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Cloud Computing Pub Date : 2024-03-18 DOI:10.1109/TCC.2024.3376394
Junfei Wang;Jing Li;Zhen Gao;Zhu Han;Chao Qiu;Xiaofei Wang
{"title":"Game-Based Low Complexity and Near Optimal Task Offloading for Mobile Blockchain Systems","authors":"Junfei Wang;Jing Li;Zhen Gao;Zhu Han;Chao Qiu;Xiaofei Wang","doi":"10.1109/TCC.2024.3376394","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) finds applications across diverse fields but grapples with privacy and security concerns. Blockchain offers a remedy by instilling trust among IoT devices. The development of blockchain in IoT encounters hurdles due to its resource-intensive computation processing, notably in PoW-based systems. Cloud and edge computing can facilitate the application of blockchain in this environment, and the IoT users who want to mine in blockchain need to pay the computation resource rent to the Cloud Computing Service Provider (CCSP) for offloading the mining workload. In this scenario, these IoT miners can form groups to trade with CCSP to maximize their utility. In this paper, a mixed model of the Stackelberg game and coalition formation game is embraced to address the grouping and pricing issues between IoT miners and CCSP. In particular, the Stackelberg game is utilized to handle the pricing problem, and the coalition formation game is employed to tackle the best group partition problem. Moreover, a coalition formation algorithm is proposed to obtain a near-optimal solution with very low complexity. Simulation results show that our proposed algorithm can obtain a performance that is very near to the exhaustive search method, outperforms other existing schemes, and requires only a small computation overhead.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10470360/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Things (IoT) finds applications across diverse fields but grapples with privacy and security concerns. Blockchain offers a remedy by instilling trust among IoT devices. The development of blockchain in IoT encounters hurdles due to its resource-intensive computation processing, notably in PoW-based systems. Cloud and edge computing can facilitate the application of blockchain in this environment, and the IoT users who want to mine in blockchain need to pay the computation resource rent to the Cloud Computing Service Provider (CCSP) for offloading the mining workload. In this scenario, these IoT miners can form groups to trade with CCSP to maximize their utility. In this paper, a mixed model of the Stackelberg game and coalition formation game is embraced to address the grouping and pricing issues between IoT miners and CCSP. In particular, the Stackelberg game is utilized to handle the pricing problem, and the coalition formation game is employed to tackle the best group partition problem. Moreover, a coalition formation algorithm is proposed to obtain a near-optimal solution with very low complexity. Simulation results show that our proposed algorithm can obtain a performance that is very near to the exhaustive search method, outperforms other existing schemes, and requires only a small computation overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于游戏的移动区块链系统的低复杂性和近乎最优的任务卸载
物联网(IoT)在各个领域都有应用,但却存在隐私和安全问题。区块链通过在物联网设备之间建立信任提供了一种补救措施。在物联网中开发区块链会遇到资源密集型计算处理的障碍,特别是在基于 PoW 的系统中。云计算和边缘计算可以促进区块链在该环境中的应用,想要在区块链中挖矿的物联网用户需要向云计算服务提供商(CCSP)支付计算资源租金,以卸载挖矿工作量。在这种情况下,这些物联网矿工可以组成小组与CCSP进行交易,以实现效用最大化。本文采用斯塔克尔伯格博弈和联盟形成博弈的混合模型来解决物联网矿工与 CCSP 之间的分组和定价问题。其中,斯塔克尔伯格博弈用于处理定价问题,联盟形成博弈用于处理最佳分组问题。此外,我们还提出了一种联盟形成算法,以极低的复杂度获得接近最优的解决方案。仿真结果表明,我们提出的算法可以获得与穷举搜索法非常接近的性能,优于其他现有方案,而且只需少量计算开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
期刊最新文献
WorkloadDiff: Conditional Denoising Diffusion Probabilistic Models for Cloud Workload Prediction A Lightweight Privacy-Preserving Ciphertext Retrieval Scheme Based on Edge Computing Generative Adversarial Privacy for Multimedia Analytics Across the IoT-Edge Continuum Corrections to “DNN Surgery: Accelerating DNN Inference on the Edge through Layer Partitioning” FedPAW: Federated Learning With Personalized Aggregation Weights for Urban Vehicle Speed Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1