{"title":"Reliability-Based Mixed Traffic Equilibrium Problem Under Endogenous Market Penetration of Connected Autonomous Vehicles and Uncertainty in Supply","authors":"Qi Zhong, Lixin Miao","doi":"10.1007/s11067-024-09621-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a novel reliability-based network equilibrium problem for mixed traffic flows of human-driven vehicles (HVs) and connected autonomous vehicles (CAVs) with endogenous CAV market penetration and stochastic link capacity degradations. Travelers’ perception errors on travel time and their risk-aversive behaviors on mode choice and path choice are incorporated in the model with a hierarchical choice structure. Due to the differences between HVs and CAVs, the perception errors and the safety margin reserved by risk-averse travelers are assumed to be related to the vehicle type. The path travel time distribution is derived by using the moment-matching method based on the assumption that link capacity follows lognormal distribution and link travel times are correlated. Then, the underlying problem is formulated as an equivalent variational inequality problem. A path-based algorithm embedded with the Monte Carlo simulation-based method is proposed to solve the model. Numerical experiments are conducted to illustrate the features of the model and the computational performance of the solution algorithm.</p>","PeriodicalId":501141,"journal":{"name":"Networks and Spatial Economics","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks and Spatial Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11067-024-09621-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider a novel reliability-based network equilibrium problem for mixed traffic flows of human-driven vehicles (HVs) and connected autonomous vehicles (CAVs) with endogenous CAV market penetration and stochastic link capacity degradations. Travelers’ perception errors on travel time and their risk-aversive behaviors on mode choice and path choice are incorporated in the model with a hierarchical choice structure. Due to the differences between HVs and CAVs, the perception errors and the safety margin reserved by risk-averse travelers are assumed to be related to the vehicle type. The path travel time distribution is derived by using the moment-matching method based on the assumption that link capacity follows lognormal distribution and link travel times are correlated. Then, the underlying problem is formulated as an equivalent variational inequality problem. A path-based algorithm embedded with the Monte Carlo simulation-based method is proposed to solve the model. Numerical experiments are conducted to illustrate the features of the model and the computational performance of the solution algorithm.