N. K. Davydchuk, M. P. Gadzyra, Y. G. Tymoshenko, M. O. Pinchuk
{"title":"Synthesis and Consolidation of Composite Materials in the SiC–Si3N4–Si2N2O System","authors":"N. K. Davydchuk, M. P. Gadzyra, Y. G. Tymoshenko, M. O. Pinchuk","doi":"10.1007/s11106-024-00407-7","DOIUrl":null,"url":null,"abstract":"<p>Features peculiar to the synthesis of SiC–Si<sub>3</sub>N<sub>4</sub>–Si<sub>2</sub>N<sub>2</sub>O composite powder with a controlled content of silicon carbide, nitride, and oxynitride phases, as well as the structure and properties of hot-pressed ceramics produced from this powder, were examined. The optimal composition of the synthesized SiC–Si<sub>3</sub>N<sub>4</sub>–Si<sub>2</sub>N<sub>2</sub>O powder was achieved by heating a 1 : 3 mixture of thermally expanded graphite (TEG) and silicon up to 1200°C in air. The interaction of TEG with fine silicon at 1200°C led to the formation of a solid solution of carbon in silicon carbide, accompanied by heat release. The generated heat increased temperature within localized volumes of the TEG cellular structure to a level where air nitrogen facilitated the development of silicon nitride and oxynitride and an amorphous phase. The amorphous phase crystallized as the interaction time increased to 2.5 h. The duration of the process influenced the final distribution of the phases, formed with the participation of CO, SiO, and air nitrogen. The microstructure of the synthesized powder was characterized by a general agglomerated state, resulting from rod and plate forms of Si<sub>3</sub>N<sub>4</sub> and Si<sub>2</sub>N<sub>2</sub>O. Hot pressing of the synthesized SiC–Si<sub>3</sub>N<sub>4</sub>–Si<sub>2</sub>N<sub>2</sub>O composite powder with Al<sub>2</sub>O<sub>3</sub> and Y<sub>2</sub>O<sub>3</sub> activators yielded superfine ceramics, possessing enhanced hardness and fracture toughness (HV10 = 20.7 GPa and <i>K</i><sub>Ic</sub> = 6.5 MPa · m<sup>1/2</sup>). The structure of the ceramics sintered at 2000°C differed from those sintered at 1850°C, primarily by higher density and average grain size. The superfine state significantly influenced the abrasive wear resistance of the ceramics in dry friction conditions. The linear wear index of a sample with an average size of structural elements varying from 0.2 to 1.5 μm was 111 μm/km at a sliding speed of 1 m/sec under a load of 0.2 MPa. This was significantly lower than the linear wear index of industrial ceramics of reaction-sintered silicon carbide (RSSC), which was 232.4 μm/km.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 7-8","pages":"459 - 468"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-024-00407-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Features peculiar to the synthesis of SiC–Si3N4–Si2N2O composite powder with a controlled content of silicon carbide, nitride, and oxynitride phases, as well as the structure and properties of hot-pressed ceramics produced from this powder, were examined. The optimal composition of the synthesized SiC–Si3N4–Si2N2O powder was achieved by heating a 1 : 3 mixture of thermally expanded graphite (TEG) and silicon up to 1200°C in air. The interaction of TEG with fine silicon at 1200°C led to the formation of a solid solution of carbon in silicon carbide, accompanied by heat release. The generated heat increased temperature within localized volumes of the TEG cellular structure to a level where air nitrogen facilitated the development of silicon nitride and oxynitride and an amorphous phase. The amorphous phase crystallized as the interaction time increased to 2.5 h. The duration of the process influenced the final distribution of the phases, formed with the participation of CO, SiO, and air nitrogen. The microstructure of the synthesized powder was characterized by a general agglomerated state, resulting from rod and plate forms of Si3N4 and Si2N2O. Hot pressing of the synthesized SiC–Si3N4–Si2N2O composite powder with Al2O3 and Y2O3 activators yielded superfine ceramics, possessing enhanced hardness and fracture toughness (HV10 = 20.7 GPa and KIc = 6.5 MPa · m1/2). The structure of the ceramics sintered at 2000°C differed from those sintered at 1850°C, primarily by higher density and average grain size. The superfine state significantly influenced the abrasive wear resistance of the ceramics in dry friction conditions. The linear wear index of a sample with an average size of structural elements varying from 0.2 to 1.5 μm was 111 μm/km at a sliding speed of 1 m/sec under a load of 0.2 MPa. This was significantly lower than the linear wear index of industrial ceramics of reaction-sintered silicon carbide (RSSC), which was 232.4 μm/km.
期刊介绍:
Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.