Knowledge-aware adaptive graph network for commonsense question answering

IF 2.3 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent Information Systems Pub Date : 2024-03-19 DOI:10.1007/s10844-024-00854-z
Long Kang, Xiaoge Li, Xiaochun An
{"title":"Knowledge-aware adaptive graph network for commonsense question answering","authors":"Long Kang, Xiaoge Li, Xiaochun An","doi":"10.1007/s10844-024-00854-z","DOIUrl":null,"url":null,"abstract":"<p>Commonsense Question Answering (CQA) aims to select the correct answers to common knowledge questions. Most existing approaches focus on integrating external knowledge graph (KG) representations with question context representations to facilitate reasoning. However, the approaches cannot effectively select the correct answer due to (i) the incomplete reasoning chains when using knowledge graphs as external knowledge, and (ii) the insufficient understanding of semantic information of the question during the reasoning process. Here we propose a novel model, KA-AGN. First, we utilize a joint representation of dependency parse trees and language models to describe QA pairs. Next, we introduce question semantic information as nodes into a knowledge subgraph and compute the correlations between nodes using adaptive graph networks. Finally, bidirectional attention and graph pruning are employed to update the question representation and the knowledge subgraph representation. To evaluate the performance of our method, we conducted experiments on two widely used benchmark datasets: CommonsenseQA and OpenBookQA. The ablation experiment results demonstrate the effectiveness of the adaptive graph network in enhancing reasoning chains, while showing the ability of the joint representation of dependency parse trees and language models to correctly understand question semantics. Our code is publicly available at https://github.com/agfsghfdhg/KAAGN-main.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"70 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-024-00854-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Commonsense Question Answering (CQA) aims to select the correct answers to common knowledge questions. Most existing approaches focus on integrating external knowledge graph (KG) representations with question context representations to facilitate reasoning. However, the approaches cannot effectively select the correct answer due to (i) the incomplete reasoning chains when using knowledge graphs as external knowledge, and (ii) the insufficient understanding of semantic information of the question during the reasoning process. Here we propose a novel model, KA-AGN. First, we utilize a joint representation of dependency parse trees and language models to describe QA pairs. Next, we introduce question semantic information as nodes into a knowledge subgraph and compute the correlations between nodes using adaptive graph networks. Finally, bidirectional attention and graph pruning are employed to update the question representation and the knowledge subgraph representation. To evaluate the performance of our method, we conducted experiments on two widely used benchmark datasets: CommonsenseQA and OpenBookQA. The ablation experiment results demonstrate the effectiveness of the adaptive graph network in enhancing reasoning chains, while showing the ability of the joint representation of dependency parse trees and language models to correctly understand question semantics. Our code is publicly available at https://github.com/agfsghfdhg/KAAGN-main.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于常识性问题解答的知识感知自适应图网络
常识性问题解答(CQA)旨在为常识性问题选择正确答案。现有的大多数方法都侧重于将外部知识图谱(KG)表示法与问题上下文表示法相结合,以促进推理。然而,由于(i) 使用知识图谱作为外部知识时推理链不完整,以及(ii) 在推理过程中对问题的语义信息理解不足,这些方法无法有效地选出正确答案。在此,我们提出了一个新颖的模型--KA-AGN。首先,我们利用依赖解析树和语言模型的联合表示来描述 QA 对。接下来,我们将问题语义信息作为节点引入知识子图,并利用自适应图网络计算节点之间的相关性。最后,我们采用双向关注和图修剪来更新问题表征和知识子图表征。为了评估我们方法的性能,我们在两个广泛使用的基准数据集上进行了实验:CommonsenseQA 和 OpenBookQA。消融实验结果证明了自适应图网络在增强推理链方面的有效性,同时也展示了依赖解析树和语言模型的联合表示法正确理解问题语义的能力。我们的代码可在 https://github.com/agfsghfdhg/KAAGN-main 上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Intelligent Information Systems
Journal of Intelligent Information Systems 工程技术-计算机:人工智能
CiteScore
7.20
自引率
11.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems. These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to: discover knowledge from large data collections, provide cooperative support to users in complex query formulation and refinement, access, retrieve, store and manage large collections of multimedia data and knowledge, integrate information from multiple heterogeneous data and knowledge sources, and reason about information under uncertain conditions. Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces. The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.
期刊最新文献
Nirdizati: an advanced predictive process monitoring toolkit Graph attention networks with adaptive neighbor graph aggregation for cold-start recommendation FedGR: Cross-platform federated group recommendation system with hypergraph neural networks CONCORD: enhancing COVID-19 research with weak-supervision based numerical claim extraction DA-BAG: A multi-model fusion text classification method combining BERT and GCN using self-domain adversarial training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1