Improving model choice in classification: an approach based on clustering of covariance matrices

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Statistics and Computing Pub Date : 2024-03-19 DOI:10.1007/s11222-024-10410-y
David Rodríguez-Vítores, Carlos Matrán
{"title":"Improving model choice in classification: an approach based on clustering of covariance matrices","authors":"David Rodríguez-Vítores, Carlos Matrán","doi":"10.1007/s11222-024-10410-y","DOIUrl":null,"url":null,"abstract":"<p>This work introduces a refinement of the Parsimonious Model for fitting a Gaussian Mixture. The improvement is based on the consideration of clusters of the involved covariance matrices according to a criterion, such as sharing Principal Directions. This and other similarity criteria that arise from the spectral decomposition of a matrix are the bases of the Parsimonious Model. We show that such groupings of covariance matrices can be achieved through simple modifications of the CEM (Classification Expectation Maximization) algorithm. Our approach leads to propose Gaussian Mixture Models for model-based clustering and discriminant analysis, in which covariance matrices are clustered according to a parsimonious criterion, creating intermediate steps between the fourteen widely known parsimonious models. The added versatility not only allows us to obtain models with fewer parameters for fitting the data, but also provides greater interpretability. We show its usefulness for model-based clustering and discriminant analysis, providing algorithms to find approximate solutions verifying suitable size, shape and orientation constraints, and applying them to both simulation and real data examples.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10410-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces a refinement of the Parsimonious Model for fitting a Gaussian Mixture. The improvement is based on the consideration of clusters of the involved covariance matrices according to a criterion, such as sharing Principal Directions. This and other similarity criteria that arise from the spectral decomposition of a matrix are the bases of the Parsimonious Model. We show that such groupings of covariance matrices can be achieved through simple modifications of the CEM (Classification Expectation Maximization) algorithm. Our approach leads to propose Gaussian Mixture Models for model-based clustering and discriminant analysis, in which covariance matrices are clustered according to a parsimonious criterion, creating intermediate steps between the fourteen widely known parsimonious models. The added versatility not only allows us to obtain models with fewer parameters for fitting the data, but also provides greater interpretability. We show its usefulness for model-based clustering and discriminant analysis, providing algorithms to find approximate solutions verifying suitable size, shape and orientation constraints, and applying them to both simulation and real data examples.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进分类中的模型选择:基于协方差矩阵聚类的方法
这项工作对用于拟合高斯混合物的帕西莫尼模型(Parsimonious Model)进行了改进。改进的基础是根据标准(如共享主方向)考虑相关协方差矩阵的聚类。这个标准和其他由矩阵谱分解产生的相似性标准是帕西蒙模型的基础。我们的研究表明,通过对 CEM(分类期望最大化)算法进行简单的修改,就可以对协方差矩阵进行分组。我们的方法提出了基于模型的聚类和判别分析的高斯混杂模型,其中协方差矩阵是根据拟标准聚类的,在 14 个广为人知的拟模型之间创建了中间步骤。增加的多功能性不仅能让我们用更少的参数获得拟合数据的模型,还能提供更高的可解释性。我们展示了它在基于模型的聚类和判别分析中的实用性,提供了验证适当大小、形状和方向约束的近似解的算法,并将其应用于模拟和真实数据示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
期刊最新文献
Accelerated failure time models with error-prone response and nonlinear covariates Sequential model identification with reversible jump ensemble data assimilation method Hidden Markov models for multivariate panel data Shrinkage for extreme partial least-squares Nonconvex Dantzig selector and its parallel computing algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1