Default Resilience and Worst-Case Effects in Financial Networks

Giuseppe Calafiore, Giulia Fracastoro, Anton Proskurnikov
{"title":"Default Resilience and Worst-Case Effects in Financial Networks","authors":"Giuseppe Calafiore, Giulia Fracastoro, Anton Proskurnikov","doi":"arxiv-2403.10631","DOIUrl":null,"url":null,"abstract":"In this paper we analyze the resilience of a network of banks to joint price\nfluctuations of the external assets in which they have shared exposures, and\nevaluate the worst-case effects of the possible default contagion. Indeed, when\nthe prices of certain external assets either decrease or increase, all banks\nexposed to them experience varying degrees of simultaneous shocks to their\nbalance sheets. These coordinated and structured shocks have the potential to\nexacerbate the likelihood of defaults. In this context, we introduce first a\nconcept of {default resilience margin}, $\\epsilon^*$, i.e., the maximum\namplitude of asset prices fluctuations that the network can tolerate without\ngenerating defaults. Such threshold value is computed by considering two\ndifferent measures of price fluctuations, one based on the maximum individual\nvariation of each asset, and the other based on the sum of all the asset's\nabsolute variations. For any price perturbation having amplitude no larger than\n$\\epsilon^*$, the network absorbs the shocks remaining default free. When the\nperturbation amplitude goes beyond $\\epsilon^*$, however, defaults may occur.\nIn this case we find the worst-case systemic loss, that is, the total unpaid\ndebt under the most severe price variation of given magnitude. Computation of\nboth the threshold level $\\epsilon^*$ and of the worst-case loss and of a\ncorresponding worst-case asset price scenario, amounts to solving suitable\nlinear programming problems.}","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.10631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we analyze the resilience of a network of banks to joint price fluctuations of the external assets in which they have shared exposures, and evaluate the worst-case effects of the possible default contagion. Indeed, when the prices of certain external assets either decrease or increase, all banks exposed to them experience varying degrees of simultaneous shocks to their balance sheets. These coordinated and structured shocks have the potential to exacerbate the likelihood of defaults. In this context, we introduce first a concept of {default resilience margin}, $\epsilon^*$, i.e., the maximum amplitude of asset prices fluctuations that the network can tolerate without generating defaults. Such threshold value is computed by considering two different measures of price fluctuations, one based on the maximum individual variation of each asset, and the other based on the sum of all the asset's absolute variations. For any price perturbation having amplitude no larger than $\epsilon^*$, the network absorbs the shocks remaining default free. When the perturbation amplitude goes beyond $\epsilon^*$, however, defaults may occur. In this case we find the worst-case systemic loss, that is, the total unpaid debt under the most severe price variation of given magnitude. Computation of both the threshold level $\epsilon^*$ and of the worst-case loss and of a corresponding worst-case asset price scenario, amounts to solving suitable linear programming problems.}
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金融网络中的违约弹性和最坏情况效应
在本文中,我们分析了银行网络对外部资产价格波动的抵御能力,并评估了可能出现的违约蔓延的最坏情况。事实上,当某些外部资产的价格下跌或上涨时,所有与之有风险敞口的银行的资产负债表都会同时受到不同程度的冲击。这些协调的、结构化的冲击有可能加剧违约的可能性。在这种情况下,我们首先引入了{违约弹性边际}的概念,即网络在不产生违约的情况下所能承受的资产价格波动的最大振幅。这种阈值是通过考虑两种不同的价格波动度量来计算的,一种是基于每种资产的最大单个波动,另一种是基于所有资产绝对波动的总和。对于振幅不大于$\epsilon^*$的任何价格扰动,网络都会吸收冲击,保持无违约。在这种情况下,我们会发现最坏情况下的系统性损失,即在给定幅度的最严重价格变动下的未偿还债务总额。计算阈值$\epsilon^*$和最坏情况损失以及相应的最坏情况资产价格情景,相当于解决适当的线性规划问题。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DeFi Arbitrage in Hedged Liquidity Tokens Decomposition Pipeline for Large-Scale Portfolio Optimization with Applications to Near-Term Quantum Computing Research and Design of a Financial Intelligent Risk Control Platform Based on Big Data Analysis and Deep Machine Learning Credit Spreads' Term Structure: Stochastic Modeling with CIR++ Intensity Claims processing and costs under capacity constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1