{"title":"Detection of Image Tampering Using Deep Learning, Error Levels and Noise Residuals","authors":"Sunen Chakraborty, Kingshuk Chatterjee, Paramita Dey","doi":"10.1007/s11063-024-11448-9","DOIUrl":null,"url":null,"abstract":"<p>Images once were considered a reliable source of information. However, when photo-editing software started to get noticed it gave rise to illegal activities which is called image tampering. These days we can come across innumerable tampered images across the internet. Software such as Photoshop, GNU Image Manipulation Program, etc. are applied to form tampered images from real ones in just a few minutes. To discover hidden signs of tampering in an image deep learning models are an effective tool than any other methods. Models used in deep learning are capable of extracting intricate features from an image automatically. Here we proposed a combination of traditional handcrafted features along with a deep learning model to differentiate between authentic and tampered images. We have presented a dual-branch Convolutional Neural Network in conjunction with Error Level Analysis and noise residuals from Spatial Rich Model. For our experiment, we utilized the freely accessible CASIA dataset. After training the dual-branch network for 16 epochs, it generated an accuracy of 98.55%. We have also provided a comparative analysis with other previously proposed work in the field of image forgery detection. This hybrid approach proves that deep learning models along with some well-known traditional approaches can provide better results for detecting tampered images.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"10 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11448-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Images once were considered a reliable source of information. However, when photo-editing software started to get noticed it gave rise to illegal activities which is called image tampering. These days we can come across innumerable tampered images across the internet. Software such as Photoshop, GNU Image Manipulation Program, etc. are applied to form tampered images from real ones in just a few minutes. To discover hidden signs of tampering in an image deep learning models are an effective tool than any other methods. Models used in deep learning are capable of extracting intricate features from an image automatically. Here we proposed a combination of traditional handcrafted features along with a deep learning model to differentiate between authentic and tampered images. We have presented a dual-branch Convolutional Neural Network in conjunction with Error Level Analysis and noise residuals from Spatial Rich Model. For our experiment, we utilized the freely accessible CASIA dataset. After training the dual-branch network for 16 epochs, it generated an accuracy of 98.55%. We have also provided a comparative analysis with other previously proposed work in the field of image forgery detection. This hybrid approach proves that deep learning models along with some well-known traditional approaches can provide better results for detecting tampered images.
期刊介绍:
Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches.
The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters