{"title":"Intuitionistic Fuzzy Extreme Learning Machine with the Truncated Pinball Loss","authors":"Qingyun Gao, Qing Ai, Wenhui Wang","doi":"10.1007/s11063-024-11492-5","DOIUrl":null,"url":null,"abstract":"<p>Fuzzy extreme learning machine (FELM) is an effective algorithm for dealing with classification problems with noises, which uses a membership function to effectively suppress noise in data. However, FELM has the following drawbacks: (a) The membership degree of samples in FELM is constructed by considering only the distance between the samples and the class center, not the local information of samples. It is easy to mistake some boundary samples for noises. (b) FELM uses the least squares loss function, which leads to sensitivity to feature noise and instability to re-sampling. To address the above drawbacks, we propose an intuitionistic fuzzy extreme learning machine with the truncated pinball loss (TPin-IFELM). Firstly, we use the K-nearest neighbor (KNN) method to obtain local information of the samples and then construct membership and non-membership degrees for each sample in the random mapping feature space based on valuable local information. Secondly, we calculate the score value of samples based on the membership and non-membership degrees, which can effectively identify whether the boundary samples are noises or not. Thirdly, in order to maintain the sparsity and robustness of the model, and enhance the stability of the resampling of the model, we introduce the truncated pinball loss function into the model. Finally, in order to solve more efficiently, we employ the concave-convex procedure (CCCP) to solve TPin-IFELM. Extensive comparative experiments are conducted on the benchmark datasets to verify the superior performance of TPin-IFELM.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"31 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11492-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Fuzzy extreme learning machine (FELM) is an effective algorithm for dealing with classification problems with noises, which uses a membership function to effectively suppress noise in data. However, FELM has the following drawbacks: (a) The membership degree of samples in FELM is constructed by considering only the distance between the samples and the class center, not the local information of samples. It is easy to mistake some boundary samples for noises. (b) FELM uses the least squares loss function, which leads to sensitivity to feature noise and instability to re-sampling. To address the above drawbacks, we propose an intuitionistic fuzzy extreme learning machine with the truncated pinball loss (TPin-IFELM). Firstly, we use the K-nearest neighbor (KNN) method to obtain local information of the samples and then construct membership and non-membership degrees for each sample in the random mapping feature space based on valuable local information. Secondly, we calculate the score value of samples based on the membership and non-membership degrees, which can effectively identify whether the boundary samples are noises or not. Thirdly, in order to maintain the sparsity and robustness of the model, and enhance the stability of the resampling of the model, we introduce the truncated pinball loss function into the model. Finally, in order to solve more efficiently, we employ the concave-convex procedure (CCCP) to solve TPin-IFELM. Extensive comparative experiments are conducted on the benchmark datasets to verify the superior performance of TPin-IFELM.
期刊介绍:
Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches.
The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters