Advanced Statistical Arbitrage with Reinforcement Learning

Boming Ning, Kiseop Lee
{"title":"Advanced Statistical Arbitrage with Reinforcement Learning","authors":"Boming Ning, Kiseop Lee","doi":"arxiv-2403.12180","DOIUrl":null,"url":null,"abstract":"Statistical arbitrage is a prevalent trading strategy which takes advantage\nof mean reverse property of spread of paired stocks. Studies on this strategy\noften rely heavily on model assumption. In this study, we introduce an\ninnovative model-free and reinforcement learning based framework for\nstatistical arbitrage. For the construction of mean reversion spreads, we\nestablish an empirical reversion time metric and optimize asset coefficients by\nminimizing this empirical mean reversion time. In the trading phase, we employ\na reinforcement learning framework to identify the optimal mean reversion\nstrategy. Diverging from traditional mean reversion strategies that primarily\nfocus on price deviations from a long-term mean, our methodology creatively\nconstructs the state space to encapsulate the recent trends in price movements.\nAdditionally, the reward function is carefully tailored to reflect the unique\ncharacteristics of mean reversion trading.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"162 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.12180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Statistical arbitrage is a prevalent trading strategy which takes advantage of mean reverse property of spread of paired stocks. Studies on this strategy often rely heavily on model assumption. In this study, we introduce an innovative model-free and reinforcement learning based framework for statistical arbitrage. For the construction of mean reversion spreads, we establish an empirical reversion time metric and optimize asset coefficients by minimizing this empirical mean reversion time. In the trading phase, we employ a reinforcement learning framework to identify the optimal mean reversion strategy. Diverging from traditional mean reversion strategies that primarily focus on price deviations from a long-term mean, our methodology creatively constructs the state space to encapsulate the recent trends in price movements. Additionally, the reward function is carefully tailored to reflect the unique characteristics of mean reversion trading.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用强化学习进行高级统计套利
统计套利是一种利用配对股票价差均值反向特性的普遍交易策略。对这种策略的研究往往严重依赖模型假设。在本研究中,我们为统计套利引入了一个无模型、基于强化学习的创新框架。为了构建均值回归价差,我们建立了一个经验回归时间指标,并通过最小化这个经验均值回归时间来优化资产系数。在交易阶段,我们采用强化学习框架来确定最优均值回归策略。与主要关注价格偏离长期均值的传统均值回归策略不同,我们的方法创造性地构建了状态空间,以囊括价格走势的近期趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Macroscopic properties of equity markets: stylized facts and portfolio performance Tuning into Climate Risks: Extracting Innovation from TV News for Clean Energy Firms On the macroeconomic fundamentals of long-term volatilities and dynamic correlations in COMEX copper futures Market information of the fractional stochastic regularity model Critical Dynamics of Random Surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1