{"title":"Rare-Earth Free Unity Power Factor Bi-Axial Excitation Synchronous Machine for Traction Applications","authors":"Ritvik Chattopadhyay;Junyeong Jung;Md. Sariful Islam;Ion Boldea;Iqbal Husain","doi":"10.1109/TIA.2024.3379312","DOIUrl":null,"url":null,"abstract":"Rare-earth-based traction machines are subject to supply chain, geo-political, and price fluctuation issues, which makes rare-earth-free motor topologies attractive for electric vehicle (EV) traction applications. In this research, a 24-slot/4-pole, unity power factor, air-cooled, rare-earth-free bi-axial excitation synchronous machine (BESM) with ferrite magnets is explored for traction applications. The proposed machine achieves a unity power factor due to the presence of stator flux countering magnets embedded in the rotor, while the torque-producing component of the rotor flux is produced by DC field windings. A 4.2 kW, 40 Nm BESM is designed using a 2D-finite element analysis (FEA) based optimization, and a prototype is fabricated. The performance of the prototype is experimentally verified up to the rated torque in a dynamometer test setup. Based on the experimental validation of the prototype, a scaled-up 100 kW BESM is designed and characterized using FEA to verify the effectiveness of the proposed concept for high-power traction applications.","PeriodicalId":13337,"journal":{"name":"IEEE Transactions on Industry Applications","volume":"60 4","pages":"5966-5978"},"PeriodicalIF":4.2000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industry Applications","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10475491/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Rare-earth-based traction machines are subject to supply chain, geo-political, and price fluctuation issues, which makes rare-earth-free motor topologies attractive for electric vehicle (EV) traction applications. In this research, a 24-slot/4-pole, unity power factor, air-cooled, rare-earth-free bi-axial excitation synchronous machine (BESM) with ferrite magnets is explored for traction applications. The proposed machine achieves a unity power factor due to the presence of stator flux countering magnets embedded in the rotor, while the torque-producing component of the rotor flux is produced by DC field windings. A 4.2 kW, 40 Nm BESM is designed using a 2D-finite element analysis (FEA) based optimization, and a prototype is fabricated. The performance of the prototype is experimentally verified up to the rated torque in a dynamometer test setup. Based on the experimental validation of the prototype, a scaled-up 100 kW BESM is designed and characterized using FEA to verify the effectiveness of the proposed concept for high-power traction applications.
期刊介绍:
The scope of the IEEE Transactions on Industry Applications includes all scope items of the IEEE Industry Applications Society, that is, the advancement of the theory and practice of electrical and electronic engineering in the development, design, manufacture, and application of electrical systems, apparatus, devices, and controls to the processes and equipment of industry and commerce; the promotion of safe, reliable, and economic installations; industry leadership in energy conservation and environmental, health, and safety issues; the creation of voluntary engineering standards and recommended practices; and the professional development of its membership.