Radar active oppressive interference suppression based on generative adversarial network

IF 1.4 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Radar Sonar and Navigation Pub Date : 2024-03-19 DOI:10.1049/rsn2.12556
Yongzhi Yu, Yu You, Ping Wang, Limin Guo
{"title":"Radar active oppressive interference suppression based on generative adversarial network","authors":"Yongzhi Yu,&nbsp;Yu You,&nbsp;Ping Wang,&nbsp;Limin Guo","doi":"10.1049/rsn2.12556","DOIUrl":null,"url":null,"abstract":"<p>Modern radar systems often face various interference signals in complex and rapidly changing electronic environments. The task of suppressing this interference in the radar echo signal to extract vital information is challenging. A radar interference suppression method is proposed based on a generative adversarial network (GAN). This method effectively recovers the target signal from the echo signal, which contains interference and noise, by leveraging the powerful fitting ability of GAN. Specifically, this method was tested using coherent suppression interference, smart noise interference, and noise frequency modulation suppression interference. We compared the proposed GAN method with recurrent neural network, short-time Fourier transform time-varying filtering, short-time fractional Fourier transform time-varying filtering algorithms and RNN approach. The results show that the interference suppression algorithm based on GAN is superior to the other three algorithms.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 7","pages":"1193-1202"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12556","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12556","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Modern radar systems often face various interference signals in complex and rapidly changing electronic environments. The task of suppressing this interference in the radar echo signal to extract vital information is challenging. A radar interference suppression method is proposed based on a generative adversarial network (GAN). This method effectively recovers the target signal from the echo signal, which contains interference and noise, by leveraging the powerful fitting ability of GAN. Specifically, this method was tested using coherent suppression interference, smart noise interference, and noise frequency modulation suppression interference. We compared the proposed GAN method with recurrent neural network, short-time Fourier transform time-varying filtering, short-time fractional Fourier transform time-varying filtering algorithms and RNN approach. The results show that the interference suppression algorithm based on GAN is superior to the other three algorithms.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生成式对抗网络的雷达主动压迫性干扰抑制
现代雷达系统在复杂多变的电子环境中经常会遇到各种干扰信号。如何抑制雷达回波信号中的干扰以提取重要信息是一项极具挑战性的任务。本文提出了一种基于生成对抗网络(GAN)的雷达干扰抑制方法。该方法利用生成式对抗网络强大的拟合能力,从包含干扰和噪声的回波信号中有效地恢复出目标信号。具体来说,该方法使用相干抑制干扰、智能噪声干扰和噪声频率调制抑制干扰进行了测试。我们将所提出的 GAN 方法与递归神经网络、短时傅里叶变换时变滤波、短时分数傅里叶变换时变滤波算法和 RNN 方法进行了比较。结果表明,基于 GAN 的干扰抑制算法优于其他三种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
期刊最新文献
Matched cross-spectrum phase processing for source depth estimation in deep water Development of a reliable adaptive estimation approach for a low-cost attitude and heading reference system Availability evaluation and optimisation of advanced receiver autonomous integrity monitoring fault detection and exclusion considering temporal correlations Multi-agent multi-dimensional joint optimisation of jamming decision-making against multi-functional radar Active reconfigurable intelligent surface-aided multiple-input-multiple-output radar detection in the presence of clutter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1