{"title":"Relationship between the Stratospheric Arctic Vortex and Surface Air Temperature in the Midlatitudes of the Northern Hemisphere","authors":"Xue Ran, Dingzhu Hu, Yang Zhang, Mei-Chen Liu","doi":"10.1007/s13351-024-3072-7","DOIUrl":null,"url":null,"abstract":"<p>It is known that different relationships exist between the strength and displacement of the stratospheric polar vortex (SPV), and the surface air temperature (SAT) patterns in Eurasia and North America, but the mechanisms behind these relationships remain unclear, especially on an interannual timescale. Based on empirical orthogonal function (EOF) analysis using NCEP reanalysis data over 1958–2018, this study attempts to ascertain the relationship between the SPV intensity and displacement over the Arctic and the SATs in the midlatitudes of the Northern Hemisphere. Our results indicate that a strengthened SPV corresponds to an SAT increase in Eurasia and a decrease in eastern North America and Greenland. When the SPV is shifted towards Eurasia, however, a corresponding SAT increase occurs in both North America and Eurasia, with a larger increase in North America than in Eurasia. Specifically, a strengthened SPV tends to correspond to a positive North Atlantic Oscillation-like circulation in the troposphere with negative geopotential height (GH) anomalies in Greenland and eastern North American continent and positive GH anomalies to the north of 45°N in Eurasia, which corresponds to lower SATs in North America than in Eurasia. However, when the SPV shifted towards Eurasia, it was accompanied by a positive Pacific/North American-like pattern with a deepened Aleutian low, which corresponds to the increasing SATs in North America. These tropospheric circulation changes are related to the response of tropospheric planetary wave activity to the SPV. A strengthened SPV corresponds to the weakening of tropospheric planetary wave-1 waves, which is accompanied by a negative GH in North America but a positive GH in Eurasia. If the SPV shifted towards Eurasia, the tropospheric planetary wave-1 (-2) waves strengthened (weakened), and the combined effects of the planetary wave-1 and wave-2 waves would cause positive GH anomalies in both Eurasia and North America.</p>","PeriodicalId":48796,"journal":{"name":"Journal of Meteorological Research","volume":"2 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Meteorological Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13351-024-3072-7","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
It is known that different relationships exist between the strength and displacement of the stratospheric polar vortex (SPV), and the surface air temperature (SAT) patterns in Eurasia and North America, but the mechanisms behind these relationships remain unclear, especially on an interannual timescale. Based on empirical orthogonal function (EOF) analysis using NCEP reanalysis data over 1958–2018, this study attempts to ascertain the relationship between the SPV intensity and displacement over the Arctic and the SATs in the midlatitudes of the Northern Hemisphere. Our results indicate that a strengthened SPV corresponds to an SAT increase in Eurasia and a decrease in eastern North America and Greenland. When the SPV is shifted towards Eurasia, however, a corresponding SAT increase occurs in both North America and Eurasia, with a larger increase in North America than in Eurasia. Specifically, a strengthened SPV tends to correspond to a positive North Atlantic Oscillation-like circulation in the troposphere with negative geopotential height (GH) anomalies in Greenland and eastern North American continent and positive GH anomalies to the north of 45°N in Eurasia, which corresponds to lower SATs in North America than in Eurasia. However, when the SPV shifted towards Eurasia, it was accompanied by a positive Pacific/North American-like pattern with a deepened Aleutian low, which corresponds to the increasing SATs in North America. These tropospheric circulation changes are related to the response of tropospheric planetary wave activity to the SPV. A strengthened SPV corresponds to the weakening of tropospheric planetary wave-1 waves, which is accompanied by a negative GH in North America but a positive GH in Eurasia. If the SPV shifted towards Eurasia, the tropospheric planetary wave-1 (-2) waves strengthened (weakened), and the combined effects of the planetary wave-1 and wave-2 waves would cause positive GH anomalies in both Eurasia and North America.
期刊介绍:
Journal of Meteorological Research (previously known as Acta Meteorologica Sinica) publishes the latest achievements and developments in the field of atmospheric sciences. Coverage is broad, including topics such as pure and applied meteorology; climatology and climate change; marine meteorology; atmospheric physics and chemistry; cloud physics and weather modification; numerical weather prediction; data assimilation; atmospheric sounding and remote sensing; atmospheric environment and air pollution; radar and satellite meteorology; agricultural and forest meteorology and more.