Thermal stresses in an orthotropic hollow sphere under thermal shock: a unified generalized thermoelasticity

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Engineering Mathematics Pub Date : 2024-03-19 DOI:10.1007/s10665-023-10321-3
Mehdi Soroush, Mohammad Soroush
{"title":"Thermal stresses in an orthotropic hollow sphere under thermal shock: a unified generalized thermoelasticity","authors":"Mehdi Soroush, Mohammad Soroush","doi":"10.1007/s10665-023-10321-3","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with the thermoelasticity problem in an orthotropic hollow sphere. A unified governing equation is derived which includes the classical, Lord–Shulman and Green–Lindsay coupled theories of thermoelasticity. Time-dependent thermal and mechanical boundary conditions are applied to the inner and outer surfaces of the hollow sphere and the problem is solved analytically using the finite Hankel transform. The inner surface of the sphere is subjected to a thermal shock in the form of a prescribed heat flux. Subsequently, the thermal response, radial displacement, as well as radial, tangential, and circumferential stresses of the sphere are determined. The influence of different orthotropic material properties and relaxation time values is investigated and presented graphically. The obtained results demonstrate excellent agreement with the existing literature.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":"100 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-023-10321-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the thermoelasticity problem in an orthotropic hollow sphere. A unified governing equation is derived which includes the classical, Lord–Shulman and Green–Lindsay coupled theories of thermoelasticity. Time-dependent thermal and mechanical boundary conditions are applied to the inner and outer surfaces of the hollow sphere and the problem is solved analytically using the finite Hankel transform. The inner surface of the sphere is subjected to a thermal shock in the form of a prescribed heat flux. Subsequently, the thermal response, radial displacement, as well as radial, tangential, and circumferential stresses of the sphere are determined. The influence of different orthotropic material properties and relaxation time values is investigated and presented graphically. The obtained results demonstrate excellent agreement with the existing literature.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
各向同性空心球在热冲击下的热应力:统一的广义热弹性
本文论述了正交空心球的热弹性问题。导出了一个统一的控制方程,其中包括经典热弹性理论、洛德-舒尔曼理论和格林-林赛耦合理论。对空心球的内外表面施加了随时间变化的热边界条件和机械边界条件,并使用有限汉克尔变换对问题进行了分析求解。球体内表面受到规定热通量形式的热冲击。随后,确定了球体的热响应、径向位移以及径向、切向和圆周应力。研究了不同的各向同性材料特性和弛豫时间值的影响,并以图表形式呈现。所得结果与现有文献非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Engineering Mathematics
Journal of Engineering Mathematics 工程技术-工程:综合
CiteScore
2.10
自引率
7.70%
发文量
44
审稿时长
6 months
期刊介绍: The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following: • Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods. • Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas. The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly. Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.
期刊最新文献
Axisymmetric thermoviscous and thermal expansion flows for microfluidics. Erosion of surfaces by trapped vortices Nanoparticle uptake by a semi-permeable, spherical cell from an external planar diffusive field. II. Numerical study of temporal and spatial development validated using FEM On the positive self-similar solutions of the boundary-layer wedge flow problem of a power-law fluid Experimental and theoretical investigation of impinging droplet solidification at moderate impact velocities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1