Zijie Jiang, Xiuxia Yang, Cong Wang, Yi Zhang, Hao Yu
{"title":"Multi-UAV DMPC Cooperative Guidance with Constraints of Terminal Angle and Obstacle Avoidance","authors":"Zijie Jiang, Xiuxia Yang, Cong Wang, Yi Zhang, Hao Yu","doi":"10.1155/2024/6912247","DOIUrl":null,"url":null,"abstract":"This paper studies the salvo attack problem for multiple unmanned aerial vehicles (UAVs) against a maneuvering target, and a guidance scheme based on distributed model predictive control (DMPC) is presented to achieve cooperative interception with constraints of terminal impact angle and no-fly zone (or obstacle) avoidance. Firstly, for guaranteeing the synchronization of UAVs in calculating their acceleration commands, the assumed predictive trajectories are introduced, whose deviation from the actual state trajectories is limited by the designed compatibility constraints. Secondly, based on the velocity-obstacle model, the obstacle avoidance constraints are presented, and for guaranteeing the convergence of impact time and impact angles, the auxiliary controller and terminal ingredients are developed, which complete the design of DMPC cooperative guidance scheme. Subsequently, the rigorous proof for the convergence of the proposed guidance scheme is provided. Based on the above design, a complete implementation process of the guidance scheme is presented, in which each UAV uses the particle swarm optimization algorithm to solve the preprocessed local optimization problem, and only the shared information among neighbors is utilized for calculation. Finally, the numerical simulations are conducted under diverse cases, which demonstrate the effectiveness of the proposed guidance scheme when solving cooperative interception problems with terminal angle and obstacle avoidance constraints.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"60 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/6912247","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the salvo attack problem for multiple unmanned aerial vehicles (UAVs) against a maneuvering target, and a guidance scheme based on distributed model predictive control (DMPC) is presented to achieve cooperative interception with constraints of terminal impact angle and no-fly zone (or obstacle) avoidance. Firstly, for guaranteeing the synchronization of UAVs in calculating their acceleration commands, the assumed predictive trajectories are introduced, whose deviation from the actual state trajectories is limited by the designed compatibility constraints. Secondly, based on the velocity-obstacle model, the obstacle avoidance constraints are presented, and for guaranteeing the convergence of impact time and impact angles, the auxiliary controller and terminal ingredients are developed, which complete the design of DMPC cooperative guidance scheme. Subsequently, the rigorous proof for the convergence of the proposed guidance scheme is provided. Based on the above design, a complete implementation process of the guidance scheme is presented, in which each UAV uses the particle swarm optimization algorithm to solve the preprocessed local optimization problem, and only the shared information among neighbors is utilized for calculation. Finally, the numerical simulations are conducted under diverse cases, which demonstrate the effectiveness of the proposed guidance scheme when solving cooperative interception problems with terminal angle and obstacle avoidance constraints.
期刊介绍:
International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles.
Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to:
-Mechanics of materials and structures-
Aerodynamics and fluid mechanics-
Dynamics and control-
Aeroacoustics-
Aeroelasticity-
Propulsion and combustion-
Avionics and systems-
Flight simulation and mechanics-
Unmanned air vehicles (UAVs).
Review articles on any of the above topics are also welcome.