Cardiotoxic effects of common and emerging drugs: role of cannabinoid receptors.

IF 6.7 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Clinical science Pub Date : 2024-03-20 DOI:10.1042/CS20231156
Yiming Bo, Xin Zhao, Liliang Li
{"title":"Cardiotoxic effects of common and emerging drugs: role of cannabinoid receptors.","authors":"Yiming Bo, Xin Zhao, Liliang Li","doi":"10.1042/CS20231156","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-induced cardiotoxicity has become one of the most common and detrimental health concerns, which causes significant loss to public health and drug resources. Cannabinoid receptors (CBRs) have recently achieved great attention for their vital roles in the regulation of heart health and disease, with mounting evidence linking CBRs with the pathogenesis and progression of drug-induced cardiotoxicity. This review aims to summarize fundamental characteristics of two well-documented CBRs (CB1R and CB2R) from aspects of molecular structure, signaling and their functions in cardiovascular physiology and pathophysiology. Moreover, we describe the roles of CB1R and CB2R in the occurrence of cardiotoxicity induced by common drugs such as antipsychotics, anti-cancer drugs, marijuana, and some emerging synthetic cannabinoids. We highlight the 'yin-yang' relationship between CB1R and CB2R in drug-induced cardiotoxicity and propose future perspectives for CBR-based translational medicine toward cardiotoxicity curation and clinical monitoring.</p>","PeriodicalId":10475,"journal":{"name":"Clinical science","volume":"138 6","pages":"413-434"},"PeriodicalIF":6.7000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20231156","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Drug-induced cardiotoxicity has become one of the most common and detrimental health concerns, which causes significant loss to public health and drug resources. Cannabinoid receptors (CBRs) have recently achieved great attention for their vital roles in the regulation of heart health and disease, with mounting evidence linking CBRs with the pathogenesis and progression of drug-induced cardiotoxicity. This review aims to summarize fundamental characteristics of two well-documented CBRs (CB1R and CB2R) from aspects of molecular structure, signaling and their functions in cardiovascular physiology and pathophysiology. Moreover, we describe the roles of CB1R and CB2R in the occurrence of cardiotoxicity induced by common drugs such as antipsychotics, anti-cancer drugs, marijuana, and some emerging synthetic cannabinoids. We highlight the 'yin-yang' relationship between CB1R and CB2R in drug-induced cardiotoxicity and propose future perspectives for CBR-based translational medicine toward cardiotoxicity curation and clinical monitoring.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
常见药物和新兴药物的心脏毒性效应:大麻素受体的作用。
药物引起的心脏毒性已成为最常见、最有害的健康问题之一,给公共卫生和药物资源造成了重大损失。最近,大麻素受体(CBRs)因其在心脏健康和疾病调控中的重要作用而备受关注,越来越多的证据表明CBRs与药物诱导的心脏毒性的发病机制和进展有关。本综述旨在从分子结构、信号传导及其在心血管生理和病理生理学中的功能等方面总结两种已被证实的 CBR(CB1R 和 CB2R)的基本特征。此外,我们还描述了 CB1R 和 CB2R 在抗精神病药物、抗癌药物、大麻和一些新兴合成大麻素等常见药物诱发的心脏毒性中的作用。我们强调了 CB1R 和 CB2R 在药物诱导的心脏毒性中的 "阴阳 "关系,并提出了基于 CBR 的转化医学在心脏毒性遏制和临床监测方面的未来展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical science
Clinical science 医学-医学:研究与实验
CiteScore
11.40
自引率
0.00%
发文量
189
审稿时长
4-8 weeks
期刊介绍: Translating molecular bioscience and experimental research into medical insights, Clinical Science offers multi-disciplinary coverage and clinical perspectives to advance human health. Its international Editorial Board is charged with selecting peer-reviewed original papers of the highest scientific merit covering the broad spectrum of biomedical specialities including, although not exclusively: Cardiovascular system Cerebrovascular system Gastrointestinal tract and liver Genomic medicine Infection and immunity Inflammation Oncology Metabolism Endocrinology and nutrition Nephrology Circulation Respiratory system Vascular biology Molecular pathology.
期刊最新文献
CXCL5 inhibition ameliorates acute kidney injury and prevents the progression from acute kidney injury to chronic kidney disease. Placental small extracellular vesicles from normal pregnancy and gestational diabetes increase insulin gene transcription and content in β cells. Endothelin-1 receptor blockade impairs invasion patterns in engineered 3D high-grade serous ovarian cancer tumouroids. Evaluation of the cell death markers for aberrated cell free DNA release in high altitude pulmonary edema. Piezo Channels in JG cells do not Regulate Renin Expression or Renin Release to the Circulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1