Standardizing Chondrocyte Isolation and Articular Cartilage Decellularization: A Versatile Bioink for Tissue Engineering Applications.

Q4 Biochemistry, Genetics and Molecular Biology Methods in molecular biology Pub Date : 2024-03-21 DOI:10.1007/7651_2024_534
Upasna Upadhyay, Kamma Srinivasulu, Lakshmi Kiran Chelluri
{"title":"Standardizing Chondrocyte Isolation and Articular Cartilage Decellularization: A Versatile Bioink for Tissue Engineering Applications.","authors":"Upasna Upadhyay, Kamma Srinivasulu, Lakshmi Kiran Chelluri","doi":"10.1007/7651_2024_534","DOIUrl":null,"url":null,"abstract":"<p><p>The extracellular matrix (ECM) is a noncellular component of tissues that provides structural and biochemical support to cells. The purpose of decellularization is to provide a tissue-specific niche to preserve the architecture, composition, and signaling molecules of the ECM. The current protocol discusses the standardization of chondrocyte isolation and the preparation of acellular ECM as a bioink additive from human native articular cartilage. Isolated chondrocytes with bioink additives provide a tissue-specific microenvironment. Herein, we discuss a standardized protocol with multiple applications in the area of organ-on-a-chip model development, spheroid formation, microfluidics platform, bioprinting, and tissue engineering. Cartilage tissue engineering is complex owing to the heterogeneous complex proteins, which are a challenge to synthesize; hence, this protocol in many ways offers cues to exploit the acellular ECM for multiple ongoing research studies.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The extracellular matrix (ECM) is a noncellular component of tissues that provides structural and biochemical support to cells. The purpose of decellularization is to provide a tissue-specific niche to preserve the architecture, composition, and signaling molecules of the ECM. The current protocol discusses the standardization of chondrocyte isolation and the preparation of acellular ECM as a bioink additive from human native articular cartilage. Isolated chondrocytes with bioink additives provide a tissue-specific microenvironment. Herein, we discuss a standardized protocol with multiple applications in the area of organ-on-a-chip model development, spheroid formation, microfluidics platform, bioprinting, and tissue engineering. Cartilage tissue engineering is complex owing to the heterogeneous complex proteins, which are a challenge to synthesize; hence, this protocol in many ways offers cues to exploit the acellular ECM for multiple ongoing research studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
软骨细胞分离和关节软骨脱细胞标准化:组织工程应用的多功能生物墨水。
细胞外基质(ECM)是组织的非细胞成分,为细胞提供结构和生化支持。脱细胞的目的是提供一个组织特异性的龛位,以保留 ECM 的结构、组成和信号分子。目前的方案讨论了软骨细胞分离的标准化以及从人体原生关节软骨中制备无细胞 ECM 作为生物墨水添加剂。分离的软骨细胞与生物墨水添加剂可提供组织特异性微环境。在此,我们讨论了一种标准化方案,它在片上器官模型开发、球体形成、微流控平台、生物打印和组织工程学领域具有多种应用。软骨组织工程非常复杂,因为其中含有异质的复杂蛋白质,合成这些蛋白质是一项挑战;因此,该方案在很多方面为正在进行的多项研究提供了利用细胞 ECM 的线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
期刊最新文献
A Guideline Strategy for Identifying a Viral Gene/Protein Evading Antiviral Innate Immunity. A Guideline Strategy for Identifying Genes/Proteins Regulating Antiviral Innate Immunity. Application of Proteomics Technology Based on LC-MS Combined with Western Blotting and Co-IP in Antiviral Innate Immunity. Click Chemistry in Detecting Protein Modification. CRISPR-Mediated Construction of Gene-Knockout Mice for Investigating Antiviral Innate Immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1