PHD1-3 oxygen sensors in vivo-lessons learned from gene deletions.

IF 2.9 4区 医学 Q2 PHYSIOLOGY Pflugers Archiv : European journal of physiology Pub Date : 2024-09-01 Epub Date: 2024-03-21 DOI:10.1007/s00424-024-02944-x
Agnieszka E Jucht, Carsten C Scholz
{"title":"PHD1-3 oxygen sensors in vivo-lessons learned from gene deletions.","authors":"Agnieszka E Jucht, Carsten C Scholz","doi":"10.1007/s00424-024-02944-x","DOIUrl":null,"url":null,"abstract":"<p><p>Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. Prolyl-4-hydroxylase domain 1-3 (PHD1-3; also called Egln1-3, HIF-P4H 1-3, HIF-PH 1-3) proteins belong to the Fe<sup>2+</sup>- and 2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O<sub>2</sub>) alongside 2-oxoglutarate as co-substrate to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-3-mediated hydroxylation of HIF-α leads to its degradation and inactivation. Recently, various PHD inhibitors (PHI) have entered the clinics for treatment of renal anaemia. Pre-clinical analyses indicate that PHI treatment may also be beneficial in numerous other hypoxia-associated diseases. Nonetheless, the underlying molecular mechanisms of the observed protective effects of PHIs are only partly understood, currently hindering their translation into the clinics. Moreover, the PHI-mediated increase of Epo levels is not beneficial in all hypoxia-associated diseases and PHD-selective inhibition may be advantageous. Here, we summarise the current knowledge about the relevance and function of each of the three PHD isoforms in vivo, based on the deletion or RNA interference-mediated knockdown of each single corresponding gene in rodents. This information is crucial for our understanding of the physiological relevance and function of the PHDs as well as for elucidating their individual impact on hypoxia-associated diseases. Furthermore, this knowledge highlights which diseases may best be targeted by PHD isoform-selective inhibitors in case such pharmacologic substances become available.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":"1307-1337"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310289/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-024-02944-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. Prolyl-4-hydroxylase domain 1-3 (PHD1-3; also called Egln1-3, HIF-P4H 1-3, HIF-PH 1-3) proteins belong to the Fe2+- and 2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O2) alongside 2-oxoglutarate as co-substrate to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-3-mediated hydroxylation of HIF-α leads to its degradation and inactivation. Recently, various PHD inhibitors (PHI) have entered the clinics for treatment of renal anaemia. Pre-clinical analyses indicate that PHI treatment may also be beneficial in numerous other hypoxia-associated diseases. Nonetheless, the underlying molecular mechanisms of the observed protective effects of PHIs are only partly understood, currently hindering their translation into the clinics. Moreover, the PHI-mediated increase of Epo levels is not beneficial in all hypoxia-associated diseases and PHD-selective inhibition may be advantageous. Here, we summarise the current knowledge about the relevance and function of each of the three PHD isoforms in vivo, based on the deletion or RNA interference-mediated knockdown of each single corresponding gene in rodents. This information is crucial for our understanding of the physiological relevance and function of the PHDs as well as for elucidating their individual impact on hypoxia-associated diseases. Furthermore, this knowledge highlights which diseases may best be targeted by PHD isoform-selective inhibitors in case such pharmacologic substances become available.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
活体 PHD1-3 氧传感器--从基因缺失中汲取的教训。
氧传感器使细胞能够适应有限的氧气供应(缺氧),影响各种细胞和组织反应。脯氨酰-4-羟化酶结构域 1-3(PHD1-3,又称 Egln1-3、HIF-P4H 1-3、HIF-PH 1-3)蛋白属于铁-2+和 2-氧代戊二酸依赖性二氧酶超家族,利用分子氧(O2)和 2-氧代戊二酸作为辅助底物,羟化二聚体缺氧诱导因子(HIF)转录因子 α 亚基的两个脯氨酸残基。PHD1-3 介导的 HIF-α 羟基化导致其降解和失活。最近,各种 PHD 抑制剂(PHI)已进入临床,用于治疗肾性贫血。临床前分析表明,PHI 治疗对许多其他缺氧相关疾病也可能有益。然而,人们对 PHIs 保护作用的基本分子机制只有部分了解,这阻碍了 PHIs 在临床上的应用。此外,PHI 介导的 Epo 水平升高并非对所有缺氧相关疾病都有益处,PHD 选择性抑制可能更有优势。在此,我们根据啮齿类动物中每种单个相应基因的缺失或 RNA 干扰介导的基因敲除,总结了目前关于三种 PHD 异构体在体内的相关性和功能的知识。这些信息对于我们了解 PHD 的生理相关性和功能以及阐明它们各自对缺氧相关疾病的影响至关重要。此外,这些知识还突显了在 PHD 同工酶选择性抑制剂出现的情况下,哪些疾病可能是 PHD 同工酶选择性抑制剂的最佳靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
2.20%
发文量
121
审稿时长
4-8 weeks
期刊介绍: Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.
期刊最新文献
Spatially dependent tissue distribution of thyroid hormones by plasma thyroid hormone binding proteins. Competing effects of activation history on force and cytosolic Ca2+ in intact single mice myofibers. GQ style: a multipronged therapeutic approach to pulmonary arterial hypertension. Hyperosmolality activates polycystin-2 and TRPM4 in renal primary cilium. An Editor-in-Chief's farewell.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1