{"title":"Exploration of the prognostic prediction value of the PANoptosis-based risk score and its correlation with tumor immunity in lung adenocarcinoma","authors":"Xiaojian Zhao, Xuefeng Zhang, Feng Li, Caiping Lu","doi":"10.1002/jgm.3682","DOIUrl":null,"url":null,"abstract":"<p>Lung adenocarcinoma (LUAD) is a common cancer with high mortality worldwide. PANoptosis is a novel inflammatory programmed cell death modality with the characteristics of pyroptosis, apoptosis and necroptosis. It is necessary to explore PANoptosis-related genes in LUAD patients and offer evidence for prognosis prediction and therapeutic strategies. Single-cell RNA sequencing data and RNA expression profiles of LUAD patients from The Cancer Genome Atlas and Gene Expression Omnibus databases are used to screen PANoptosis-related differential genes for the construction of a risk model. Fifteen PANoptosis-related markers with prognostic value were identified by Least Absolute Shrinkage and Selection Operator (LASSO)–Cox regression analysis. Kaplan–Meier analysis and receiver operating characteristic curve analysis further demonstrated the significant predictive capability. Immune infiltration, Single Nucleotide Variants (SNV) mutations, and clinical drug susceptibility were analyzed. In conclusion, a risk model of 15 PANoptosis-related genes has significant value in prognostic prediction for LUAD and has potential to direct clinical therapeutic strategies during the treatment.</p>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gene Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgm.3682","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lung adenocarcinoma (LUAD) is a common cancer with high mortality worldwide. PANoptosis is a novel inflammatory programmed cell death modality with the characteristics of pyroptosis, apoptosis and necroptosis. It is necessary to explore PANoptosis-related genes in LUAD patients and offer evidence for prognosis prediction and therapeutic strategies. Single-cell RNA sequencing data and RNA expression profiles of LUAD patients from The Cancer Genome Atlas and Gene Expression Omnibus databases are used to screen PANoptosis-related differential genes for the construction of a risk model. Fifteen PANoptosis-related markers with prognostic value were identified by Least Absolute Shrinkage and Selection Operator (LASSO)–Cox regression analysis. Kaplan–Meier analysis and receiver operating characteristic curve analysis further demonstrated the significant predictive capability. Immune infiltration, Single Nucleotide Variants (SNV) mutations, and clinical drug susceptibility were analyzed. In conclusion, a risk model of 15 PANoptosis-related genes has significant value in prognostic prediction for LUAD and has potential to direct clinical therapeutic strategies during the treatment.
期刊介绍:
The aims and scope of The Journal of Gene Medicine include cutting-edge science of gene transfer and its applications in gene and cell therapy, genome editing with precision nucleases, epigenetic modifications of host genome by small molecules, siRNA, microRNA and other noncoding RNAs as therapeutic gene-modulating agents or targets, biomarkers for precision medicine, and gene-based prognostic/diagnostic studies.
Key areas of interest are the design of novel synthetic and viral vectors, novel therapeutic nucleic acids such as mRNA, modified microRNAs and siRNAs, antagomirs, aptamers, antisense and exon-skipping agents, refined genome editing tools using nucleic acid /protein combinations, physically or biologically targeted delivery and gene modulation, ex vivo or in vivo pharmacological studies including animal models, and human clinical trials.
Papers presenting research into the mechanisms underlying transfer and action of gene medicines, the application of the new technologies for stem cell modification or nucleic acid based vaccines, the identification of new genetic or epigenetic variations as biomarkers to direct precision medicine, and the preclinical/clinical development of gene/expression signatures indicative of diagnosis or predictive of prognosis are also encouraged.