Development and external validation of a deep learning-based computed tomography classification system for COVID-19.

Annals of clinical epidemiology Pub Date : 2022-07-08 eCollection Date: 2022-01-01 DOI:10.37737/ace.22014
Yuki Kataoka, Tomohisa Baba, Tatsuyoshi Ikenoue, Yoshinori Matsuoka, Junichi Matsumoto, Junji Kumasawa, Kentaro Tochitani, Hiraku Funakoshi, Tomohiro Hosoda, Aiko Kugimiya, Michinori Shirano, Fumiko Hamabe, Sachiyo Iwata, Yoshiro Kitamura, Tsubasa Goto, Shingo Hamaguchi, Takafumi Haraguchi, Shungo Yamamoto, Hiromitsu Sumikawa, Koji Nishida, Haruka Nishida, Koichi Ariyoshi, Hiroaki Sugiura, Hidenori Nakagawa, Tomohiro Asaoka, Naofumi Yoshida, Rentaro Oda, Takashi Koyama, Yui Iwai, Yoshihiro Miyashita, Koya Okazaki, Kiminobu Tanizawa, Tomohiro Handa, Shoji Kido, Shingo Fukuma, Noriyuki Tomiyama, Toyohiro Hirai, Takashi Ogura
{"title":"Development and external validation of a deep learning-based computed tomography classification system for COVID-19.","authors":"Yuki Kataoka, Tomohisa Baba, Tatsuyoshi Ikenoue, Yoshinori Matsuoka, Junichi Matsumoto, Junji Kumasawa, Kentaro Tochitani, Hiraku Funakoshi, Tomohiro Hosoda, Aiko Kugimiya, Michinori Shirano, Fumiko Hamabe, Sachiyo Iwata, Yoshiro Kitamura, Tsubasa Goto, Shingo Hamaguchi, Takafumi Haraguchi, Shungo Yamamoto, Hiromitsu Sumikawa, Koji Nishida, Haruka Nishida, Koichi Ariyoshi, Hiroaki Sugiura, Hidenori Nakagawa, Tomohiro Asaoka, Naofumi Yoshida, Rentaro Oda, Takashi Koyama, Yui Iwai, Yoshihiro Miyashita, Koya Okazaki, Kiminobu Tanizawa, Tomohiro Handa, Shoji Kido, Shingo Fukuma, Noriyuki Tomiyama, Toyohiro Hirai, Takashi Ogura","doi":"10.37737/ace.22014","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We aimed to develop and externally validate a novel machine learning model that can classify CT image findings as positive or negative for SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR).</p><p><strong>Methods: </strong>We used 2,928 images from a wide variety of case-control type data sources for the development and internal validation of the machine learning model. A total of 633 COVID-19 cases and 2,295 non-COVID-19 cases were included in the study. We randomly divided cases into training and tuning sets at a ratio of 8:2. For external validation, we used 893 images from 740 consecutive patients at 11 acute care hospitals suspected of having COVID-19 at the time of diagnosis. The dataset included 343 COVID-19 patients. The reference standard was RT-PCR.</p><p><strong>Results: </strong>In external validation, the sensitivity and specificity of the model were 0.869 and 0.432, at the low-level cutoff, 0.724 and 0.721, at the high-level cutoff. Area under the receiver operating characteristic was 0.76.</p><p><strong>Conclusions: </strong>Our machine learning model exhibited a high sensitivity in external validation datasets and may assist physicians to rule out COVID-19 diagnosis in a timely manner at emergency departments. Further studies are warranted to improve model specificity.</p>","PeriodicalId":517436,"journal":{"name":"Annals of clinical epidemiology","volume":"4 4","pages":"110-119"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10760489/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of clinical epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37737/ace.22014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: We aimed to develop and externally validate a novel machine learning model that can classify CT image findings as positive or negative for SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR).

Methods: We used 2,928 images from a wide variety of case-control type data sources for the development and internal validation of the machine learning model. A total of 633 COVID-19 cases and 2,295 non-COVID-19 cases were included in the study. We randomly divided cases into training and tuning sets at a ratio of 8:2. For external validation, we used 893 images from 740 consecutive patients at 11 acute care hospitals suspected of having COVID-19 at the time of diagnosis. The dataset included 343 COVID-19 patients. The reference standard was RT-PCR.

Results: In external validation, the sensitivity and specificity of the model were 0.869 and 0.432, at the low-level cutoff, 0.724 and 0.721, at the high-level cutoff. Area under the receiver operating characteristic was 0.76.

Conclusions: Our machine learning model exhibited a high sensitivity in external validation datasets and may assist physicians to rule out COVID-19 diagnosis in a timely manner at emergency departments. Further studies are warranted to improve model specificity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为 COVID-19 开发基于深度学习的计算机断层扫描分类系统并进行外部验证。
背景:我们旨在开发一种新型的机器学习模型,并对其进行外部验证:我们的目的是开发并从外部验证一种新型机器学习模型,该模型可将 CT 图像结果划分为 SARS-CoV-2 逆转录聚合酶链反应(RT-PCR)阳性或阴性:我们使用了来自各种病例对照类型数据源的 2,928 张图像来开发和内部验证机器学习模型。共有 633 个 COVID-19 病例和 2,295 个非 COVID-19 病例被纳入研究。我们按照 8:2 的比例将病例随机分为训练集和调整集。在外部验证中,我们使用了来自 11 家急诊医院的 740 名连续患者的 893 张图像,这些患者在确诊时被怀疑患有 COVID-19。数据集包括 343 名 COVID-19 患者。参考标准为 RT-PCR:在外部验证中,该模型的灵敏度和特异性在低水平截断时分别为 0.869 和 0.432,在高水平截断时分别为 0.724 和 0.721。接受者操作特征下面积为 0.76:我们的机器学习模型在外部验证数据集中表现出较高的灵敏度,可帮助急诊科医生及时排除 COVID-19 诊断。为了提高模型的特异性,还需要进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating optimal rehabilitation strategies in ICU: study protocol for a multicentre cohort study to assess Physical Activity dosing, Muscle mass, and physICal outcomeS (IPAMICS study). Updated information on the Diagnosis Procedure Combination data. Bayesian Latent Class Models for Evaluating the Validity of Claim-based Definitions of Disease Outcomes. Efficacy of Donepezil for Fatigue and Psychological Symptoms in Post-COVID-19 Condition: Study Protocol for a Multicenter Randomized, Placebo-controlled, Double-blind Trial. Updated Information on NDB.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1