Shanying Han, Xiaolong Zhao, Lin Cheng, Jiangang Fan
{"title":"Recent progresses in neural tissue engineering using topographic scaffolds.","authors":"Shanying Han, Xiaolong Zhao, Lin Cheng, Jiangang Fan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Neural tissue engineering as alternatives to recover damaged tissues and organs is getting more and more attention due to the lack of regeneration ability of natural tissue nervous system after injury. Particularly, topographic scaffolds are one of the critical elements to guide nerve orientation and reconnection with characteristics of mimic the natural extracellular matrix. This review focuses on scaffolds preparation technologies, topographical features, scaffolds-based encapsulations delivery strategies for neural tissue regeneration, biological functions on nerve cell guidance and regeneration, and applications of topographic scaffolds in vivo and in vitro. Here, the recent developments in topographic scaffolds for neural tissue engineering by simulating neural cell topographic orientation and differentiation are presented. We also explore the challenges and future perspectives of topographical scaffolds in clinical trials and practical applications.</p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944707/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of stem cells","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neural tissue engineering as alternatives to recover damaged tissues and organs is getting more and more attention due to the lack of regeneration ability of natural tissue nervous system after injury. Particularly, topographic scaffolds are one of the critical elements to guide nerve orientation and reconnection with characteristics of mimic the natural extracellular matrix. This review focuses on scaffolds preparation technologies, topographical features, scaffolds-based encapsulations delivery strategies for neural tissue regeneration, biological functions on nerve cell guidance and regeneration, and applications of topographic scaffolds in vivo and in vitro. Here, the recent developments in topographic scaffolds for neural tissue engineering by simulating neural cell topographic orientation and differentiation are presented. We also explore the challenges and future perspectives of topographical scaffolds in clinical trials and practical applications.