IoT data sharing technology based on blockchain and federated learning algorithms

Zhiqiang Feng
{"title":"IoT data sharing technology based on blockchain and federated learning algorithms","authors":"Zhiqiang Feng","doi":"10.1016/j.iswa.2024.200359","DOIUrl":null,"url":null,"abstract":"<div><p>To share data on Internet of Things devices more securely, accurately, and efficiently, this study designs a layered sharing architecture based on blockchain and federated learning. This architecture achieves efficient and secure Internet of Things data sharing through client node clustering and blockchain consensus processes. In addition, to address the issue of imbalanced distribution of data labels in system devices, a device clustering federated learning algorithm based on label similarity is designed to improve the accuracy and stability of the model. The experimental results showed that under independent synchronous data distribution and non independent synchronous data distribution, the research algorithm achieved a 95 % accuracy after 30 iterations, and the communication cost was relatively low. When testing algorithm stability under non independent synchronous data distribution, the more label categories there are, the higher the accuracy. When the label category <em>M</em> = 12, the accuracy could reach 96.0 %. In the medical sharing system of a certain hospital, the research system took about 42.9 % less time to extract information than the original system, and the accuracy could be maintained at over 98 %. This research method can effectively solve the problem of uneven distribution of device data labels, and improve the data transmission efficiency and accuracy of Internet of Things data sharing systems. Moreover, this method can also reduce the impact of malicious nodes on the global model, providing technical support for data transmission and security protection in other fields.</p></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"22 ","pages":"Article 200359"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667305324000358/pdfft?md5=eadc7c0c02f671c3d2bfcdcae178083b&pid=1-s2.0-S2667305324000358-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324000358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To share data on Internet of Things devices more securely, accurately, and efficiently, this study designs a layered sharing architecture based on blockchain and federated learning. This architecture achieves efficient and secure Internet of Things data sharing through client node clustering and blockchain consensus processes. In addition, to address the issue of imbalanced distribution of data labels in system devices, a device clustering federated learning algorithm based on label similarity is designed to improve the accuracy and stability of the model. The experimental results showed that under independent synchronous data distribution and non independent synchronous data distribution, the research algorithm achieved a 95 % accuracy after 30 iterations, and the communication cost was relatively low. When testing algorithm stability under non independent synchronous data distribution, the more label categories there are, the higher the accuracy. When the label category M = 12, the accuracy could reach 96.0 %. In the medical sharing system of a certain hospital, the research system took about 42.9 % less time to extract information than the original system, and the accuracy could be maintained at over 98 %. This research method can effectively solve the problem of uneven distribution of device data labels, and improve the data transmission efficiency and accuracy of Internet of Things data sharing systems. Moreover, this method can also reduce the impact of malicious nodes on the global model, providing technical support for data transmission and security protection in other fields.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于区块链和联合学习算法的物联网数据共享技术
为了更安全、准确、高效地共享物联网设备上的数据,本研究设计了一种基于区块链和联盟学习的分层共享架构。该架构通过客户端节点聚类和区块链共识过程,实现了高效、安全的物联网数据共享。此外,针对系统设备中数据标签分布不均衡的问题,设计了基于标签相似性的设备聚类联合学习算法,以提高模型的准确性和稳定性。实验结果表明,在独立同步数据分布和非独立同步数据分布条件下,该研究算法经过 30 次迭代后,准确率达到 95%,且通信成本相对较低。在非独立同步数据分布条件下测试算法稳定性时,标签类别越多,准确率越高。当标签类别 M = 12 时,准确率可达 96.0%。在某医院的医疗共享系统中,研究系统提取信息的时间比原系统减少了约 42.9%,准确率保持在 98% 以上。该研究方法能有效解决设备数据标签分布不均的问题,提高物联网数据共享系统的数据传输效率和准确性。此外,该方法还能减少恶意节点对全局模型的影响,为其他领域的数据传输和安全防护提供技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
期刊最新文献
MapReduce teaching learning based optimization algorithm for solving CEC-2013 LSGO benchmark Testsuit Intelligent gear decision method for vehicle automatic transmission system based on data mining Design and implementation of EventsKG for situational monitoring and security intelligence in India: An open-source intelligence gathering approach Ideological orientation and extremism detection in online social networking sites: A systematic review Multi-objective optimization of power networks integrating electric vehicles and wind energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1