A survey of malware detection using deep learning

Ahmed Bensaoud, Jugal Kalita, Mahmoud Bensaoud
{"title":"A survey of malware detection using deep learning","authors":"Ahmed Bensaoud,&nbsp;Jugal Kalita,&nbsp;Mahmoud Bensaoud","doi":"10.1016/j.mlwa.2024.100546","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of malicious software (malware) detection and classification is a complex task, and there is no perfect approach. There is still a lot of work to be done. Unlike most other research areas, standard benchmarks are difficult to find for malware detection. This paper aims to investigate recent advances in malware detection on MacOS, Windows, iOS, Android, and Linux using deep learning (DL) by investigating DL in text and image classification, the use of pre-trained and multi-task learning models for malware detection approaches to obtain high accuracy and which the best approach if we have a standard benchmark dataset. We discuss the issues and the challenges in malware detection using DL classifiers by reviewing the effectiveness of these DL classifiers and their inability to explain their decisions and actions to DL developers presenting the need to use Explainable Machine Learning (XAI) or Interpretable Machine Learning (IML) programs. Additionally, we discuss the impact of adversarial attacks on deep learning models, negatively affecting their generalization capabilities and resulting in poor performance on unseen data. We believe there is a need to train and test the effectiveness and efficiency of the current state-of-the-art deep learning models on different malware datasets. We examine eight popular DL approaches on various datasets. This survey will help researchers develop a general understanding of malware recognition using deep learning.</p></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"16 ","pages":"Article 100546"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666827024000227/pdfft?md5=0d351b2213d1dac7e256e39ac5cc38ab&pid=1-s2.0-S2666827024000227-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827024000227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of malicious software (malware) detection and classification is a complex task, and there is no perfect approach. There is still a lot of work to be done. Unlike most other research areas, standard benchmarks are difficult to find for malware detection. This paper aims to investigate recent advances in malware detection on MacOS, Windows, iOS, Android, and Linux using deep learning (DL) by investigating DL in text and image classification, the use of pre-trained and multi-task learning models for malware detection approaches to obtain high accuracy and which the best approach if we have a standard benchmark dataset. We discuss the issues and the challenges in malware detection using DL classifiers by reviewing the effectiveness of these DL classifiers and their inability to explain their decisions and actions to DL developers presenting the need to use Explainable Machine Learning (XAI) or Interpretable Machine Learning (IML) programs. Additionally, we discuss the impact of adversarial attacks on deep learning models, negatively affecting their generalization capabilities and resulting in poor performance on unseen data. We believe there is a need to train and test the effectiveness and efficiency of the current state-of-the-art deep learning models on different malware datasets. We examine eight popular DL approaches on various datasets. This survey will help researchers develop a general understanding of malware recognition using deep learning.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习检测恶意软件的调查
恶意软件(恶意软件)的检测和分类是一项复杂的任务,目前还没有完美的方法。仍有大量工作要做。与大多数其他研究领域不同,恶意软件检测很难找到标准基准。本文旨在研究使用深度学习(DL)在 MacOS、Windows、iOS、Android 和 Linux 上进行恶意软件检测的最新进展,具体方法包括研究 DL 在文本和图像分类中的应用、在恶意软件检测方法中使用预训练和多任务学习模型以获得高准确率,以及如果我们有标准基准数据集,哪种方法最好。我们讨论了使用 DL 分类器进行恶意软件检测的问题和挑战,回顾了这些 DL 分类器的有效性,以及它们无法向 DL 开发人员解释其决策和操作的问题,从而提出了使用可解释机器学习 (XAI) 或可解释机器学习 (IML) 程序的必要性。此外,我们还讨论了对抗性攻击对深度学习模型的影响,这种攻击会对其泛化能力产生负面影响,并导致其在未见数据上表现不佳。我们认为有必要在不同的恶意软件数据集上训练和测试当前最先进的深度学习模型的有效性和效率。我们在各种数据集上研究了八种流行的深度学习方法。这项调查将有助于研究人员对使用深度学习识别恶意软件有一个总体了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
期刊最新文献
Document Layout Error Rate (DLER) metric to evaluate image segmentation methods Supervised machine learning for microbiomics: Bridging the gap between current and best practices Playing with words: Comparing the vocabulary and lexical diversity of ChatGPT and humans A survey on knowledge distillation: Recent advancements Texas rural land market integration: A causal analysis using machine learning applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1