Mechanism of Cr(VI) removal by polyphenols-rich bacterial cellulose gel produced from fermented wine pomace

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL npj Clean Water Pub Date : 2024-03-20 DOI:10.1038/s41545-024-00318-5
Zhi-yu Li, Jia-jia Dong, Fidelis Azi, Xue Feng, Zhi-wen Ge, Sha Yang, Yu-xia Sun, Xue-qiang Guan, Ming-sheng Dong
{"title":"Mechanism of Cr(VI) removal by polyphenols-rich bacterial cellulose gel produced from fermented wine pomace","authors":"Zhi-yu Li, Jia-jia Dong, Fidelis Azi, Xue Feng, Zhi-wen Ge, Sha Yang, Yu-xia Sun, Xue-qiang Guan, Ming-sheng Dong","doi":"10.1038/s41545-024-00318-5","DOIUrl":null,"url":null,"abstract":"Hexavalent chromium (Cr(VI)) is still a common contaminant in water. In this work, we studied the Cr(VI) adsorption by polyphenol-rich bacterial cellulose(BC) gel, synthesized by the Komagataeibacter rhaeticus K15 using wine pomace. The results showed that the equilibrium removal capacity was 473.09 ± 1.41 mg g−1 (dry weight). The quasi-second-order kinetics model and the Langmuir removal isotherm model was the most suitable for describing the Cr(VI) removal process. Toxic Cr(VI) was converted to the low toxic Cr(III) during the removal process via the reduction of Cr(VI) to Cr(III) by polyphenols released into the solution by the BC gel. The FTIR, XRD, XPS, SEM-EDX results indicated the physical adsorption on the surface of BC and the reduction reaction between polyphenol groups and Cr(VI) is the critical mechanism of Cr(VI) removal by BC. The finding of this study demonstrates that polyphenols-rich BC gel produced from wine pomace has a superior feature for future Cr(VI)-wastewater purification.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00318-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00318-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hexavalent chromium (Cr(VI)) is still a common contaminant in water. In this work, we studied the Cr(VI) adsorption by polyphenol-rich bacterial cellulose(BC) gel, synthesized by the Komagataeibacter rhaeticus K15 using wine pomace. The results showed that the equilibrium removal capacity was 473.09 ± 1.41 mg g−1 (dry weight). The quasi-second-order kinetics model and the Langmuir removal isotherm model was the most suitable for describing the Cr(VI) removal process. Toxic Cr(VI) was converted to the low toxic Cr(III) during the removal process via the reduction of Cr(VI) to Cr(III) by polyphenols released into the solution by the BC gel. The FTIR, XRD, XPS, SEM-EDX results indicated the physical adsorption on the surface of BC and the reduction reaction between polyphenol groups and Cr(VI) is the critical mechanism of Cr(VI) removal by BC. The finding of this study demonstrates that polyphenols-rich BC gel produced from wine pomace has a superior feature for future Cr(VI)-wastewater purification.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发酵葡萄酒渣生产的富含多酚的细菌纤维素凝胶去除六价铬的机制
六价铬(Cr(VI))仍然是水中常见的污染物。在这项工作中,我们研究了由 Komagataeibacter rhaeticus K15 利用酒渣合成的富含多酚的细菌纤维素(BC)凝胶对六价铬的吸附。结果表明,平衡去除能力为 473.09 ± 1.41 mg g-1(干重)。准二阶动力学模型和 Langmuir 去除等温线模型最适合描述六价铬的去除过程。在去除过程中,BC 凝胶释放到溶液中的多酚将有毒的 Cr(VI) 还原成 Cr(III),从而将有毒的 Cr(VI) 转化为低毒的 Cr(III)。傅立叶变换红外光谱、X 射线衍射、XPS、SEM-EDX 结果表明,BC 表面的物理吸附以及多酚基团与六价铬之间的还原反应是 BC 去除六价铬的关键机制。该研究结果表明,从葡萄酒渣中提取的富含多酚的 BC 凝胶具有未来净化六价铬废水的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
期刊最新文献
Optimization of valve switch control for contamination detection in water distribution network Turning mine-tailing streams into sources of water and mineral salts in a membrane-sustained circular scenario Bacterial cellulose-graphene oxide composite membranes with enhanced fouling resistance for bio-effluents management Training caretakers to clean community wells is a highly cost-effective way to reduce exposure to coliform bacteria Uncovering pathway and mechanism of simultaneous thiocyanate detoxicity and nitrate removal through anammox and denitrification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1