A Survey on Software Vulnerability Exploitability Assessment

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS ACM Computing Surveys Pub Date : 2024-03-20 DOI:10.1145/3648610
Sarah Elder, Rayhanur Rahman, Gage Fringer, Kunal Kapoor, Laurie Williams
{"title":"A Survey on Software Vulnerability Exploitability Assessment","authors":"Sarah Elder, Rayhanur Rahman, Gage Fringer, Kunal Kapoor, Laurie Williams","doi":"10.1145/3648610","DOIUrl":null,"url":null,"abstract":"<p>Knowing the exploitability and severity of software vulnerabilities helps practitioners prioritize vulnerability mitigation efforts. Researchers have proposed and evaluated many different exploitability assessment methods. <i>The goal of this research is to assist practitioners and researchers in understanding existing methods for assessing vulnerability exploitability through a survey of exploitability assessment literature.</i> We identify three exploitability assessment approaches: assessments based on original, manual CVSS, automated Deterministic assessments, and automated Probabilistic assessments. Other than the original CVSS, the two most common subcategories are Deterministic, Program-State-Based, and Probabilistic Learning Model (LM) Assessments.</p>","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3648610","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Knowing the exploitability and severity of software vulnerabilities helps practitioners prioritize vulnerability mitigation efforts. Researchers have proposed and evaluated many different exploitability assessment methods. The goal of this research is to assist practitioners and researchers in understanding existing methods for assessing vulnerability exploitability through a survey of exploitability assessment literature. We identify three exploitability assessment approaches: assessments based on original, manual CVSS, automated Deterministic assessments, and automated Probabilistic assessments. Other than the original CVSS, the two most common subcategories are Deterministic, Program-State-Based, and Probabilistic Learning Model (LM) Assessments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
软件漏洞可利用性评估调查
了解软件漏洞的可利用性和严重性有助于从业人员确定漏洞缓解工作的优先次序。研究人员提出并评估了许多不同的可利用性评估方法。本研究的目的是通过对漏洞可利用性评估文献的调查,帮助从业人员和研究人员了解现有的漏洞可利用性评估方法。我们确定了三种可利用性评估方法:基于原始手工 CVSS 的评估、自动确定性评估和自动概率评估。除原始 CVSS 外,最常见的两个子类别是确定性评估、基于程序状态的评估和概率学习模型 (LM) 评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
期刊最新文献
Security and Privacy on Generative Data in AIGC: A Survey Open-Ethical AI: Advancements in Open-Source Human-Centric Neural Language Models Fog Computing Technology Research: A Retrospective Overview and Bibliometric Analysis Evaluation Methodologies in Software Protection Research Gender Bias in Natural Language Processing and Computer Vision: A Comparative Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1