Investigation of magneto-convection characteristics in a sudden expanding channel with convex surface geometry under thermally developing flow conditions
Emrehan Gürsoy, Hayati Kadir Pazarlioğlu, Mehmet Gürdal, Engin Gedik, Kamil Arslan, Abdullah Dağdeviren
{"title":"Investigation of magneto-convection characteristics in a sudden expanding channel with convex surface geometry under thermally developing flow conditions","authors":"Emrehan Gürsoy, Hayati Kadir Pazarlioğlu, Mehmet Gürdal, Engin Gedik, Kamil Arslan, Abdullah Dağdeviren","doi":"10.1108/hff-11-2023-0703","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this study is to analyse the magnetic field effect on <em>Fe<sub>3</sub>O<sub>4</sub>/H<sub>2</sub>O</em> Ferrofluid flowing in a sudden expansion tube, which has specific behaviour in terms of rheology, with convex dimple fins. Because the investigation of flow separation is a prominent application in performance, the effect of magnetic field and convex dimple on the thermo-hydraulic performance of sudden expansion tube are examined, in detail.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>During the solution of the boundary conditions of the sudden expansion tube, finite volume method was used. Analyses have been conducted considering the single-phase solution, steady-state, incompressible fluid and no-slip condition of the wall under forced convection conditions. In the analyses, it has been assumed that the flow was developing thermally and has been fully developed hydrodynamically.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The present study focuses on exploring the influence of the magnetic field, nanofluid concentration and convex dimple fins on the thermo-hydraulic performance of sudden expansion tube. The results indicate that the strength of the magnetic field, nanofluid concentration and convex dimple fins have a positive effect on the convective heat transfer in the system.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The authors conducted numerical studies, determining through a literature search that no one had yet investigated enhancing heat transfer on a sudden expansion tube using combinations of magnetic fields, nanofluids and convex dimple fins. The results of the numerical analyses provide valuable information about the improvement of heat transfer and system performance in electronic device cooling and heat exchangers.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"25 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-11-2023-0703","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of this study is to analyse the magnetic field effect on Fe3O4/H2O Ferrofluid flowing in a sudden expansion tube, which has specific behaviour in terms of rheology, with convex dimple fins. Because the investigation of flow separation is a prominent application in performance, the effect of magnetic field and convex dimple on the thermo-hydraulic performance of sudden expansion tube are examined, in detail.
Design/methodology/approach
During the solution of the boundary conditions of the sudden expansion tube, finite volume method was used. Analyses have been conducted considering the single-phase solution, steady-state, incompressible fluid and no-slip condition of the wall under forced convection conditions. In the analyses, it has been assumed that the flow was developing thermally and has been fully developed hydrodynamically.
Findings
The present study focuses on exploring the influence of the magnetic field, nanofluid concentration and convex dimple fins on the thermo-hydraulic performance of sudden expansion tube. The results indicate that the strength of the magnetic field, nanofluid concentration and convex dimple fins have a positive effect on the convective heat transfer in the system.
Originality/value
The authors conducted numerical studies, determining through a literature search that no one had yet investigated enhancing heat transfer on a sudden expansion tube using combinations of magnetic fields, nanofluids and convex dimple fins. The results of the numerical analyses provide valuable information about the improvement of heat transfer and system performance in electronic device cooling and heat exchangers.
期刊介绍:
The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf