Early prediction of ventricular peritoneal shunt dependency in aneurysmal subarachnoid haemorrhage patients by recurrent neural network-based machine learning using routine intensive care unit data.
Nils Schweingruber, Jan Bremer, Anton Wiehe, Marius Marc-Daniel Mader, Christina Mayer, Marcel Seungsu Woo, Stefan Kluge, Jörn Grensemann, Fanny Quandt, Jens Gempt, Marlene Fischer, Götz Thomalla, Christian Gerloff, Jennifer Sauvigny, Patrick Czorlich
{"title":"Early prediction of ventricular peritoneal shunt dependency in aneurysmal subarachnoid haemorrhage patients by recurrent neural network-based machine learning using routine intensive care unit data.","authors":"Nils Schweingruber, Jan Bremer, Anton Wiehe, Marius Marc-Daniel Mader, Christina Mayer, Marcel Seungsu Woo, Stefan Kluge, Jörn Grensemann, Fanny Quandt, Jens Gempt, Marlene Fischer, Götz Thomalla, Christian Gerloff, Jennifer Sauvigny, Patrick Czorlich","doi":"10.1007/s10877-024-01151-4","DOIUrl":null,"url":null,"abstract":"<p><p>Aneurysmal subarachnoid haemorrhage (aSAH) can lead to complications such as acute hydrocephalic congestion. Treatment of this acute condition often includes establishing an external ventricular drainage (EVD). However, chronic hydrocephalus develops in some patients, who then require placement of a permanent ventriculoperitoneal (VP) shunt. The aim of this study was to employ recurrent neural network (RNN)-based machine learning techniques to identify patients who require VP shunt placement at an early stage. This retrospective single-centre study included all patients who were diagnosed with aSAH and treated in the intensive care unit (ICU) between November 2010 and May 2020 (n = 602). More than 120 parameters were analysed, including routine neurocritical care data, vital signs and blood gas analyses. Various machine learning techniques, including RNNs and gradient boosting machines, were evaluated for their ability to predict VP shunt dependency. VP-shunt dependency could be predicted using an RNN after just one day of ICU stay, with an AUC-ROC of 0.77 (CI: 0.75-0.79). The accuracy of the prediction improved after four days of observation (Day 4: AUC-ROC 0.81, CI: 0.79-0.84). At that point, the accuracy of the prediction was 76% (CI: 75.98-83.09%), with a sensitivity of 85% (CI: 83-88%) and a specificity of 74% (CI: 71-78%). RNN-based machine learning has the potential to predict VP shunt dependency on Day 4 after ictus in aSAH patients using routine data collected in the ICU. The use of machine learning may allow early identification of patients with specific therapeutic needs and accelerate the execution of required procedures.</p>","PeriodicalId":15513,"journal":{"name":"Journal of Clinical Monitoring and Computing","volume":" ","pages":"1175-1186"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427477/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Monitoring and Computing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10877-024-01151-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aneurysmal subarachnoid haemorrhage (aSAH) can lead to complications such as acute hydrocephalic congestion. Treatment of this acute condition often includes establishing an external ventricular drainage (EVD). However, chronic hydrocephalus develops in some patients, who then require placement of a permanent ventriculoperitoneal (VP) shunt. The aim of this study was to employ recurrent neural network (RNN)-based machine learning techniques to identify patients who require VP shunt placement at an early stage. This retrospective single-centre study included all patients who were diagnosed with aSAH and treated in the intensive care unit (ICU) between November 2010 and May 2020 (n = 602). More than 120 parameters were analysed, including routine neurocritical care data, vital signs and blood gas analyses. Various machine learning techniques, including RNNs and gradient boosting machines, were evaluated for their ability to predict VP shunt dependency. VP-shunt dependency could be predicted using an RNN after just one day of ICU stay, with an AUC-ROC of 0.77 (CI: 0.75-0.79). The accuracy of the prediction improved after four days of observation (Day 4: AUC-ROC 0.81, CI: 0.79-0.84). At that point, the accuracy of the prediction was 76% (CI: 75.98-83.09%), with a sensitivity of 85% (CI: 83-88%) and a specificity of 74% (CI: 71-78%). RNN-based machine learning has the potential to predict VP shunt dependency on Day 4 after ictus in aSAH patients using routine data collected in the ICU. The use of machine learning may allow early identification of patients with specific therapeutic needs and accelerate the execution of required procedures.
期刊介绍:
The Journal of Clinical Monitoring and Computing is a clinical journal publishing papers related to technology in the fields of anaesthesia, intensive care medicine, emergency medicine, and peri-operative medicine.
The journal has links with numerous specialist societies, including editorial board representatives from the European Society for Computing and Technology in Anaesthesia and Intensive Care (ESCTAIC), the Society for Technology in Anesthesia (STA), the Society for Complex Acute Illness (SCAI) and the NAVAt (NAVigating towards your Anaestheisa Targets) group.
The journal publishes original papers, narrative and systematic reviews, technological notes, letters to the editor, editorial or commentary papers, and policy statements or guidelines from national or international societies. The journal encourages debate on published papers and technology, including letters commenting on previous publications or technological concerns. The journal occasionally publishes special issues with technological or clinical themes, or reports and abstracts from scientificmeetings. Special issues proposals should be sent to the Editor-in-Chief. Specific details of types of papers, and the clinical and technological content of papers considered within scope can be found in instructions for authors.