A TBK1 variant causes autophagolysosomal and motoneuron pathology without neuroinflammation in mice.

IF 12.6 1区 医学 Q1 IMMUNOLOGY Journal of Experimental Medicine Pub Date : 2024-05-06 Epub Date: 2024-03-22 DOI:10.1084/jem.20221190
David Brenner, Kirsten Sieverding, Jahnavi Srinidhi, Susanne Zellner, Christopher Secker, Rüstem Yilmaz, Julia Dyckow, Shady Amr, Anna Ponomarenko, Esra Tunaboylu, Yasmin Douahem, Joana S Schlag, Lucía Rodríguez Martínez, Georg Kislinger, Cornelia Niemann, Karsten Nalbach, Wolfgang P Ruf, Jonathan Uhl, Johanna Hollenbeck, Lucas Schirmer, Alberto Catanese, Christian S Lobsiger, Karin M Danzer, Deniz Yilmazer-Hanke, Christian Münch, Philipp Koch, Axel Freischmidt, Martina Fetting, Christian Behrends, Rosanna Parlato, Jochen H Weishaupt
{"title":"A TBK1 variant causes autophagolysosomal and motoneuron pathology without neuroinflammation in mice.","authors":"David Brenner, Kirsten Sieverding, Jahnavi Srinidhi, Susanne Zellner, Christopher Secker, Rüstem Yilmaz, Julia Dyckow, Shady Amr, Anna Ponomarenko, Esra Tunaboylu, Yasmin Douahem, Joana S Schlag, Lucía Rodríguez Martínez, Georg Kislinger, Cornelia Niemann, Karsten Nalbach, Wolfgang P Ruf, Jonathan Uhl, Johanna Hollenbeck, Lucas Schirmer, Alberto Catanese, Christian S Lobsiger, Karin M Danzer, Deniz Yilmazer-Hanke, Christian Münch, Philipp Koch, Axel Freischmidt, Martina Fetting, Christian Behrends, Rosanna Parlato, Jochen H Weishaupt","doi":"10.1084/jem.20221190","DOIUrl":null,"url":null,"abstract":"<p><p>Heterozygous mutations in the TBK1 gene can cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The majority of TBK1-ALS/FTD patients carry deleterious loss-of-expression mutations, and it is still unclear which TBK1 function leads to neurodegeneration. We investigated the impact of the pathogenic TBK1 missense variant p.E696K, which does not abolish protein expression, but leads to a selective loss of TBK1 binding to the autophagy adaptor protein and TBK1 substrate optineurin. Using organelle-specific proteomics, we found that in a knock-in mouse model and human iPSC-derived motor neurons, the p.E696K mutation causes presymptomatic onset of autophagolysosomal dysfunction in neurons precipitating the accumulation of damaged lysosomes. This is followed by a progressive, age-dependent motor neuron disease. Contrary to the phenotype of mice with full Tbk1 knock-out, RIPK/TNF-α-dependent hepatic, neuronal necroptosis, and overt autoinflammation were not detected. Our in vivo results indicate autophagolysosomal dysfunction as a trigger for neurodegeneration and a promising therapeutic target in TBK1-ALS/FTD.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":null,"pages":null},"PeriodicalIF":12.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10959724/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20221190","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heterozygous mutations in the TBK1 gene can cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The majority of TBK1-ALS/FTD patients carry deleterious loss-of-expression mutations, and it is still unclear which TBK1 function leads to neurodegeneration. We investigated the impact of the pathogenic TBK1 missense variant p.E696K, which does not abolish protein expression, but leads to a selective loss of TBK1 binding to the autophagy adaptor protein and TBK1 substrate optineurin. Using organelle-specific proteomics, we found that in a knock-in mouse model and human iPSC-derived motor neurons, the p.E696K mutation causes presymptomatic onset of autophagolysosomal dysfunction in neurons precipitating the accumulation of damaged lysosomes. This is followed by a progressive, age-dependent motor neuron disease. Contrary to the phenotype of mice with full Tbk1 knock-out, RIPK/TNF-α-dependent hepatic, neuronal necroptosis, and overt autoinflammation were not detected. Our in vivo results indicate autophagolysosomal dysfunction as a trigger for neurodegeneration and a promising therapeutic target in TBK1-ALS/FTD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TBK1变体会导致小鼠自噬溶酶体和运动神经元病变,但不会引起神经炎症。
TBK1基因的杂合突变可导致肌萎缩侧索硬化症(ALS)和额颞叶痴呆症(FTD)。大多数TBK1-ALS/FTD患者都携带有害的表达缺失突变,目前仍不清楚是哪种TBK1功能导致了神经退行性变。我们研究了致病性TBK1错义变异p.E696K的影响,该变异并不影响蛋白质的表达,但会导致TBK1与自噬适配蛋白和TBK1底物optineurin结合的选择性缺失。通过细胞器特异性蛋白质组学研究,我们发现在基因敲入小鼠模型和人类 iPSC 衍生的运动神经元中,p.E696K 突变会导致神经元中自噬溶酶体功能障碍的症状提前出现,并引发受损溶酶体的积累。随之而来的是进行性、年龄依赖性运动神经元疾病。与完全敲除 Tbk1 的小鼠的表型相反,没有检测到依赖 RIPK/TNF-α 的肝脏、神经元坏死和明显的自身炎症。我们的体内研究结果表明,自噬溶酶体功能障碍是神经退行性变的一个诱因,也是TBK1-ALS/FTD的一个有希望的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
1.30%
发文量
189
审稿时长
3-8 weeks
期刊介绍: Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field. Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions. Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.
期刊最新文献
Interleukin-33-activated basophils promote asthma by regulating Th2 cell entry into lung tissue. Inhibition of hTERT/telomerase/telomere mediates therapeutic efficacy of osimertinib in EGFR mutant lung cancer. SMARCA5-mediated chromatin remodeling is required for germinal center formation. Targeting TNF/TNFR superfamilies in immune-mediated inflammatory diseases. Transport of β-amyloid from brain to eye causes retinal degeneration in Alzheimer's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1