An efficient protocol for studying human pluripotent stem cell-derived myotube senescence.

Qian Zhao, Ying Jing, Shuai Ma, Weiqi Zhang, Jing Qu, Si Wang, Guang-Hui Liu
{"title":"An efficient protocol for studying human pluripotent stem cell-derived myotube senescence.","authors":"Qian Zhao, Ying Jing, Shuai Ma, Weiqi Zhang, Jing Qu, Si Wang, Guang-Hui Liu","doi":"10.52601/bpr.2023.230013","DOIUrl":null,"url":null,"abstract":"<p><p>Sarcopenia, an age-related skeletal muscle condition characterized by a progressive decline in muscle mass and function, is linked to increased vulnerability, a higher likelihood of falls, and higher mortality rates in older individuals. A comprehensive understanding of the intricate mechanisms driving skeletal muscle aging is of great significance in both scientific and clinical fields. Consequently, myotube models that facilitate studying regulatory mechanisms underlying skeletal muscle aging are important tools required to advance intervention strategies against skeletal muscle aging and associated disorders. Here, we provide a detailed protocol to generate human pluripotent stem cells-derived myotubes and describe their applications in aging studies, as well as a troubleshooting for potential problems. Overall, this protocol serves as a valuable methodological reference for exploring the role and mechanism of genes involved in skeletal muscle aging.</p>","PeriodicalId":93906,"journal":{"name":"Biophysics reports","volume":"9 5","pages":"232-240"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951477/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52601/bpr.2023.230013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sarcopenia, an age-related skeletal muscle condition characterized by a progressive decline in muscle mass and function, is linked to increased vulnerability, a higher likelihood of falls, and higher mortality rates in older individuals. A comprehensive understanding of the intricate mechanisms driving skeletal muscle aging is of great significance in both scientific and clinical fields. Consequently, myotube models that facilitate studying regulatory mechanisms underlying skeletal muscle aging are important tools required to advance intervention strategies against skeletal muscle aging and associated disorders. Here, we provide a detailed protocol to generate human pluripotent stem cells-derived myotubes and describe their applications in aging studies, as well as a troubleshooting for potential problems. Overall, this protocol serves as a valuable methodological reference for exploring the role and mechanism of genes involved in skeletal muscle aging.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究人类多能干细胞衍生肌管衰老的高效方案。
肌肉疏松症是一种与年龄有关的骨骼肌疾病,其特点是肌肉质量和功能逐渐下降。全面了解驱动骨骼肌衰老的复杂机制在科学和临床领域都具有重要意义。因此,有助于研究骨骼肌衰老调控机制的肌管模型是推进骨骼肌衰老及相关疾病干预策略的重要工具。在此,我们提供了生成源于人类多能干细胞的肌管的详细方案,并介绍了其在衰老研究中的应用,以及潜在问题的排除方法。总之,该方案为探索骨骼肌衰老相关基因的作用和机制提供了有价值的方法参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
A rapid and reproducible method for generating germ-free Drosophila melanogaster. A prognostic model for acute myeloid leukemia based on ferroptosis-related lncRNA and immune infiltration analysis. Characterization of auditory sensation in C. elegans. Current status of FAP-directed cancer theranostics: a bibliometric analysis. Mechanism and application of mesenchymal stem cells and their secreting extracellular vesicles in regulating CD4+T cells in immune diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1