Parallel multi-rate simulation scheme for modular multilevel converter-based high-voltage direct current with accurate simulation of high-frequency characteristics and field programmable gate array-based implementation
{"title":"Parallel multi-rate simulation scheme for modular multilevel converter-based high-voltage direct current with accurate simulation of high-frequency characteristics and field programmable gate array-based implementation","authors":"Chongru Liu, Yanqi Hou, Haoyun Dong, Yipeng Lv, Xinyan Wang, Chenbo Su","doi":"10.1049/hve2.12418","DOIUrl":null,"url":null,"abstract":"The real-time simulation of the modular multilevel converter-based high-voltage direct current (MMC-HVDC) transmission system has become a popular research topic. However, in order to meet the real-time performance, the real-time simulation technology will cause additional simulation errors for MMC-HVDC, especially on its frequency characteristics. Therefore, a parallel multi-rate simulation scheme for MMC-HVDC is developed in this work to ensure accurate simulation of high-frequency characteristics. Firstly, a non-error method based on converter transformer decoupling is proposed to decouple the converter and alternating current system; direct current transmission line decoupling and arm decoupling methods are used to achieve decoupling among and within converters. A multi-rate data synchronous mechanism is established by considering the differences among high-frequency characteristics caused by delayed data interaction. Secondly, the computing architectures of the primary system solver and modular multilevel converter controller are designed based on a field programmable gate array (FPGA). The real-time simulation platform for a four-terminal true bipolar MMC-HVDC is constructed based on the FPGA array. Thirdly, the factors in multi-rate simulation affecting the simulation accuracy of high-frequency characteristics are analysed. The simulator is shown to be accurate in steady and dynamic states. The authors also verify its applicability for further research on high-frequency resonance based on control experiments.","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"9 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/hve2.12418","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The real-time simulation of the modular multilevel converter-based high-voltage direct current (MMC-HVDC) transmission system has become a popular research topic. However, in order to meet the real-time performance, the real-time simulation technology will cause additional simulation errors for MMC-HVDC, especially on its frequency characteristics. Therefore, a parallel multi-rate simulation scheme for MMC-HVDC is developed in this work to ensure accurate simulation of high-frequency characteristics. Firstly, a non-error method based on converter transformer decoupling is proposed to decouple the converter and alternating current system; direct current transmission line decoupling and arm decoupling methods are used to achieve decoupling among and within converters. A multi-rate data synchronous mechanism is established by considering the differences among high-frequency characteristics caused by delayed data interaction. Secondly, the computing architectures of the primary system solver and modular multilevel converter controller are designed based on a field programmable gate array (FPGA). The real-time simulation platform for a four-terminal true bipolar MMC-HVDC is constructed based on the FPGA array. Thirdly, the factors in multi-rate simulation affecting the simulation accuracy of high-frequency characteristics are analysed. The simulator is shown to be accurate in steady and dynamic states. The authors also verify its applicability for further research on high-frequency resonance based on control experiments.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf