Exploring the role of flavin-dependent monooxygenases in the biosynthesis of aromatic compounds

IF 6.1 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology for Biofuels Pub Date : 2024-03-22 DOI:10.1186/s13068-024-02490-9
Tong Shi, Xinxiao Sun, Qipeng Yuan, Jia Wang, Xiaolin Shen
{"title":"Exploring the role of flavin-dependent monooxygenases in the biosynthesis of aromatic compounds","authors":"Tong Shi,&nbsp;Xinxiao Sun,&nbsp;Qipeng Yuan,&nbsp;Jia Wang,&nbsp;Xiaolin Shen","doi":"10.1186/s13068-024-02490-9","DOIUrl":null,"url":null,"abstract":"<div><p>Hydroxylated aromatic compounds exhibit exceptional biological activities. In the biosynthesis of these compounds, three types of hydroxylases are commonly employed: cytochrome P450 (CYP450), pterin-dependent monooxygenase (PDM), and flavin-dependent monooxygenase (FDM). Among these, FDM is a preferred choice due to its small molecular weight, stable expression in both prokaryotic and eukaryotic fermentation systems, and a relatively high concentration of necessary cofactors. However, the catalytic efficiency of many FDMs falls short of meeting the demands of large-scale production. Additionally, challenges arise from the limited availability of cofactors and compatibility issues among enzyme components. Recently, significant progress has been achieved in improving its catalytic efficiency, but have not yet detailed and informative viewed so far. Therefore, this review emphasizes the advancements in FDMs for the biosynthesis of hydroxylated aromatic compounds and presents a summary of three strategies aimed at enhancing their catalytic efficiency: (a) Developing efficient enzyme mutants through protein engineering; (b) enhancing the supply and rapid circulation of critical cofactors; (c) facilitating cofactors delivery for enhancing FDMs catalytic efficiency. Furthermore, the current challenges and further perspectives on improving catalytic efficiency of FDMs are also discussed.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02490-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02490-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydroxylated aromatic compounds exhibit exceptional biological activities. In the biosynthesis of these compounds, three types of hydroxylases are commonly employed: cytochrome P450 (CYP450), pterin-dependent monooxygenase (PDM), and flavin-dependent monooxygenase (FDM). Among these, FDM is a preferred choice due to its small molecular weight, stable expression in both prokaryotic and eukaryotic fermentation systems, and a relatively high concentration of necessary cofactors. However, the catalytic efficiency of many FDMs falls short of meeting the demands of large-scale production. Additionally, challenges arise from the limited availability of cofactors and compatibility issues among enzyme components. Recently, significant progress has been achieved in improving its catalytic efficiency, but have not yet detailed and informative viewed so far. Therefore, this review emphasizes the advancements in FDMs for the biosynthesis of hydroxylated aromatic compounds and presents a summary of three strategies aimed at enhancing their catalytic efficiency: (a) Developing efficient enzyme mutants through protein engineering; (b) enhancing the supply and rapid circulation of critical cofactors; (c) facilitating cofactors delivery for enhancing FDMs catalytic efficiency. Furthermore, the current challenges and further perspectives on improving catalytic efficiency of FDMs are also discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索黄素依赖性单氧化酶在芳香化合物生物合成中的作用
羟基芳香化合物具有特殊的生物活性。在这些化合物的生物合成过程中,通常使用三种羟化酶:细胞色素 P450(CYP450)、蝶呤依赖性单加氧酶(PDM)和黄素依赖性单加氧酶(FDM)。其中,FDM 因分子量小、在原核和真核发酵系统中表达稳定、所需辅助因子浓度相对较高而成为首选。然而,许多 FDM 的催化效率无法满足大规模生产的需求。此外,辅助因子的有限供应和酶成分之间的兼容性问题也带来了挑战。最近,在提高其催化效率方面取得了重大进展,但迄今为止还没有详细而翔实的观点。因此,本综述强调了用于羟基芳香化合物生物合成的 FDM 的进展,并总结了旨在提高其催化效率的三种策略:(a)通过蛋白质工程开发高效的酶突变体;(b)加强关键辅因子的供应和快速循环;(c)促进辅因子的输送以提高 FDM 的催化效率。此外,还讨论了提高 FDM 催化效率的当前挑战和进一步展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology for Biofuels
Biotechnology for Biofuels 工程技术-生物工程与应用微生物
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass. Biotechnology for Biofuels focuses on the following areas: • Development of terrestrial plant feedstocks • Development of algal feedstocks • Biomass pretreatment, fractionation and extraction for biological conversion • Enzyme engineering, production and analysis • Bacterial genetics, physiology and metabolic engineering • Fungal/yeast genetics, physiology and metabolic engineering • Fermentation, biocatalytic conversion and reaction dynamics • Biological production of chemicals and bioproducts from biomass • Anaerobic digestion, biohydrogen and bioelectricity • Bioprocess integration, techno-economic analysis, modelling and policy • Life cycle assessment and environmental impact analysis
期刊最新文献
Sequential pretreatment with hydroxyl radical and manganese peroxidase for the efficient enzymatic saccharification of corn stover Enhancement of non-oleaginous green microalgae Ulothrix for bio-fixing CO2 and producing biofuels by ARTP mutagenesis Potential, economic and ecological benefits of sweet sorghum bio-industry in China Production and characterization of novel/chimeric sophorose–rhamnose biosurfactants by introducing heterologous rhamnosyltransferase genes into Starmerella bombicola Simultaneous saccharification and fermentation for d-lactic acid production using a metabolically engineered Escherichia coli adapted to high temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1