Philip W. Boyd, David Antoine, Kimberley Baldry, Marin Cornec, Michael Ellwood, Svenja Halfter, Leo Lacour, Pauline Latour, Robert F. Strzepek, Thomas W. Trull, Tyler Rohr
{"title":"Controls on Polar Southern Ocean Deep Chlorophyll Maxima: Viewpoints From Multiple Observational Platforms","authors":"Philip W. Boyd, David Antoine, Kimberley Baldry, Marin Cornec, Michael Ellwood, Svenja Halfter, Leo Lacour, Pauline Latour, Robert F. Strzepek, Thomas W. Trull, Tyler Rohr","doi":"10.1029/2023GB008033","DOIUrl":null,"url":null,"abstract":"<p>Deep Chlorophyll Maxima (DCMs) are ubiquitous in low-latitude oceans, and of recognized biogeochemical and ecological importance. DCMs have been observed in the Southern Ocean, initially from ships and recently from profiling robotic floats, but with less understanding of their onset, duration, underlying drivers, or whether they are associated with enhanced biomass features. We report the characteristics of a DCM and a Deep Biomass Maximum (DBM) in the Inter-Polar-Frontal-Zone (IPFZ) south of Australia derived from CTD profiles, shipboard-incubated samples, a towbody, and a BGC-ARGO float. The DCM and DBM were ∼20 m thick and co-located with the nutricline, in the vicinity of a subsurface ammonium maximum characteristic of the IPFZ, but ∼100 m shallower than the ferricline. Towbody transects demonstrated that the co-located DCM/DBM was broadly present across the IPFZ. Large healthy diatoms, with low iron requirements, resided within the DCM/DBM, and fixed up to 20 mmol C m<sup>−2</sup> d<sup>−1</sup>. The BGC-ARGO float revealed that DCM/DBM persisted for >3 months. We propose a dual environmental mechanism to drive DCM/DBM formation and persistence within the IPFZ: sustained supply of both recycled iron within the subsurface ammonium maxima, and upward silicate transport from depth. DCM/DBM cell-specific growth rates were considerably slower than those in the overlying mixed layer, implying that phytoplankton losses such as herbivory are also reduced, possibly because of heavily silicified diatom frustules. The light-limited seasonal termination of the observed DCM/DBM did not result in a “diatom dump”, rather ongoing diatom downward export occurred throughout its multi-month persistence.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 3","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB008033","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GB008033","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Deep Chlorophyll Maxima (DCMs) are ubiquitous in low-latitude oceans, and of recognized biogeochemical and ecological importance. DCMs have been observed in the Southern Ocean, initially from ships and recently from profiling robotic floats, but with less understanding of their onset, duration, underlying drivers, or whether they are associated with enhanced biomass features. We report the characteristics of a DCM and a Deep Biomass Maximum (DBM) in the Inter-Polar-Frontal-Zone (IPFZ) south of Australia derived from CTD profiles, shipboard-incubated samples, a towbody, and a BGC-ARGO float. The DCM and DBM were ∼20 m thick and co-located with the nutricline, in the vicinity of a subsurface ammonium maximum characteristic of the IPFZ, but ∼100 m shallower than the ferricline. Towbody transects demonstrated that the co-located DCM/DBM was broadly present across the IPFZ. Large healthy diatoms, with low iron requirements, resided within the DCM/DBM, and fixed up to 20 mmol C m−2 d−1. The BGC-ARGO float revealed that DCM/DBM persisted for >3 months. We propose a dual environmental mechanism to drive DCM/DBM formation and persistence within the IPFZ: sustained supply of both recycled iron within the subsurface ammonium maxima, and upward silicate transport from depth. DCM/DBM cell-specific growth rates were considerably slower than those in the overlying mixed layer, implying that phytoplankton losses such as herbivory are also reduced, possibly because of heavily silicified diatom frustules. The light-limited seasonal termination of the observed DCM/DBM did not result in a “diatom dump”, rather ongoing diatom downward export occurred throughout its multi-month persistence.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.