In-gel staining methods of G4 DNA and RNA structures.

4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology Methods in enzymology Pub Date : 2024-01-01 Epub Date: 2023-12-22 DOI:10.1016/bs.mie.2023.12.002
Philipp Schult, Katrin Paeschke
{"title":"In-gel staining methods of G4 DNA and RNA structures.","authors":"Philipp Schult, Katrin Paeschke","doi":"10.1016/bs.mie.2023.12.002","DOIUrl":null,"url":null,"abstract":"<p><p>G-quadruplexes (G4) are functionally important nucleic acid structures, involved in many cellular pathways. They are often dynamically regulated in cells, which makes detecting them in vivo challenging and dependent on sophisticated technical equipment. Therefore, in vitro studies are commonly performed as a first step to confirm a candidate sequence folds into a G4. Several methods have been developed, each with its individual pros and cons. A highly accessible and quick approach, without the need for specialized equipment, is the detection of G4s in native gels using light-up probes. These molecules become fluorescent after specifically binding to G4s. Several different classes have been discovered, emitting light in various colors, and some possess specificity for certain G4 topologies, which makes them highly versatile tools for G4 visualization. Here, we will explore the general procedure using the light-up probe NMM on RNA G4s and discuss advantages and limitations of this method.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2023.12.002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

G-quadruplexes (G4) are functionally important nucleic acid structures, involved in many cellular pathways. They are often dynamically regulated in cells, which makes detecting them in vivo challenging and dependent on sophisticated technical equipment. Therefore, in vitro studies are commonly performed as a first step to confirm a candidate sequence folds into a G4. Several methods have been developed, each with its individual pros and cons. A highly accessible and quick approach, without the need for specialized equipment, is the detection of G4s in native gels using light-up probes. These molecules become fluorescent after specifically binding to G4s. Several different classes have been discovered, emitting light in various colors, and some possess specificity for certain G4 topologies, which makes them highly versatile tools for G4 visualization. Here, we will explore the general procedure using the light-up probe NMM on RNA G4s and discuss advantages and limitations of this method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
G4 DNA 和 RNA 结构的凝胶内染色法。
G 型四聚体(G4)是一种功能重要的核酸结构,参与了许多细胞通路。它们在细胞中通常是动态调节的,这使得在体内检测它们具有挑战性,并且依赖于复杂的技术设备。因此,体外研究通常是确认候选序列折叠成 G4 的第一步。目前已开发出几种方法,各有利弊。使用发光探针检测原生凝胶中的 G4s 是一种非常方便快捷的方法,无需专业设备。这些分子与 G4 特异性结合后会发出荧光。目前已经发现了几种不同类型的探针,它们能发出不同颜色的光,有些探针对某些 G4 拓扑结构具有特异性,这使它们成为 G4 可视化的多功能工具。在此,我们将探讨在 RNA G4 上使用发光探针 NMM 的一般程序,并讨论这种方法的优势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods in enzymology
Methods in enzymology 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
308
审稿时长
3-6 weeks
期刊介绍: The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.
期刊最新文献
Use of DNA forceps to measure receptor-ligand dissociation equilibrium constants in a single-molecule competition assay. Construction and operation of high-resolution magnetic tape head tweezers for measuring single-protein dynamics under force. Exploring the free energy landscape of proteins using magnetic tweezers. Force-fluorescence setup for observing protein-DNA interactions under load. High-speed measurements of SNARE-complexin interactions using magnetic tweezers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1