Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain.

IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Genome Biology Pub Date : 2017-01-05 DOI:10.1186/s13059-016-1139-1
Thomas Amort, Dietmar Rieder, Alexandra Wille, Daria Khokhlova-Cubberley, Christian Riml, Lukas Trixl, Xi-Yu Jia, Ronald Micura, Alexandra Lusser
{"title":"Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain.","authors":"Thomas Amort, Dietmar Rieder, Alexandra Wille, Daria Khokhlova-Cubberley, Christian Riml, Lukas Trixl, Xi-Yu Jia, Ronald Micura, Alexandra Lusser","doi":"10.1186/s13059-016-1139-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recent work has identified and mapped a range of posttranscriptional modifications in mRNA, including methylation of the N6 and N1 positions in adenine, pseudouridylation, and methylation of carbon 5 in cytosine (m5C). However, knowledge about the prevalence and transcriptome-wide distribution of m5C is still extremely limited; thus, studies in different cell types, tissues, and organisms are needed to gain insight into possible functions of this modification and implications for other regulatory processes.</p><p><strong>Results: </strong>We have carried out an unbiased global analysis of m5C in total and nuclear poly(A) RNA of mouse embryonic stem cells and murine brain. We show that there are intriguing differences in these samples and cell compartments with respect to the degree of methylation, functional classification of methylated transcripts, and position bias within the transcript. Specifically, we observe a pronounced accumulation of m5C sites in the vicinity of the translational start codon, depletion in coding sequences, and mixed patterns of enrichment in the 3' UTR. Degree and pattern of methylation distinguish transcripts modified in both embryonic stem cells and brain from those methylated in either one of the samples. We also analyze potential correlations between m5C and micro RNA target sites, binding sites of RNA binding proteins, and N6-methyladenosine.</p><p><strong>Conclusion: </strong>Our study presents the first comprehensive picture of cytosine methylation in the epitranscriptome of pluripotent and differentiated stages in the mouse. These data provide an invaluable resource for future studies of function and biological significance of m5C in mRNA in mammals.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"18 1","pages":"1"},"PeriodicalIF":12.3000,"publicationDate":"2017-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225599/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-016-1139-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Recent work has identified and mapped a range of posttranscriptional modifications in mRNA, including methylation of the N6 and N1 positions in adenine, pseudouridylation, and methylation of carbon 5 in cytosine (m5C). However, knowledge about the prevalence and transcriptome-wide distribution of m5C is still extremely limited; thus, studies in different cell types, tissues, and organisms are needed to gain insight into possible functions of this modification and implications for other regulatory processes.

Results: We have carried out an unbiased global analysis of m5C in total and nuclear poly(A) RNA of mouse embryonic stem cells and murine brain. We show that there are intriguing differences in these samples and cell compartments with respect to the degree of methylation, functional classification of methylated transcripts, and position bias within the transcript. Specifically, we observe a pronounced accumulation of m5C sites in the vicinity of the translational start codon, depletion in coding sequences, and mixed patterns of enrichment in the 3' UTR. Degree and pattern of methylation distinguish transcripts modified in both embryonic stem cells and brain from those methylated in either one of the samples. We also analyze potential correlations between m5C and micro RNA target sites, binding sites of RNA binding proteins, and N6-methyladenosine.

Conclusion: Our study presents the first comprehensive picture of cytosine methylation in the epitranscriptome of pluripotent and differentiated stages in the mouse. These data provide an invaluable resource for future studies of function and biological significance of m5C in mRNA in mammals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小鼠胚胎干细胞和大脑多聚(A)RNA 中不同的 5-甲基胞嘧啶谱。
背景:最近的研究发现并绘制了一系列 mRNA 的转录后修饰,包括腺嘌呤 N6 和 N1 位置的甲基化、假尿苷化和胞嘧啶碳 5 的甲基化(m5C)。然而,有关 m5C 的普遍性和整个转录组分布的知识仍然非常有限;因此,需要对不同细胞类型、组织和生物体进行研究,以深入了解这种修饰的可能功能以及对其他调控过程的影响:我们对小鼠胚胎干细胞和小鼠大脑总RNA和核Poly(A) RNA中的m5C进行了无偏的全面分析。我们发现,在甲基化程度、甲基化转录本的功能分类以及转录本内部的位置偏差方面,这些样本和细胞区组存在着令人费解的差异。具体来说,我们观察到 m5C 位点在翻译起始密码子附近的明显积累、编码序列中的耗竭以及 3' UTR 中的混合富集模式。甲基化的程度和模式将胚胎干细胞和大脑中甲基化的转录本与其中任何一个样本中甲基化的转录本区分开来。我们还分析了m5C与微RNA靶位点、RNA结合蛋白结合位点以及N6-甲基腺苷之间的潜在相关性:我们的研究首次全面展示了小鼠多能和分化阶段表转录组中胞嘧啶甲基化的情况。这些数据为今后研究哺乳动物 mRNA 中 m5C 的功能和生物学意义提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Biology
Genome Biology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
25.50
自引率
3.30%
发文量
0
审稿时长
14 weeks
期刊介绍: Genome Biology is a leading research journal that focuses on the study of biology and biomedicine from a genomic and post-genomic standpoint. The journal consistently publishes outstanding research across various areas within these fields. With an impressive impact factor of 12.3 (2022), Genome Biology has earned its place as the 3rd highest-ranked research journal in the Genetics and Heredity category, according to Thomson Reuters. Additionally, it is ranked 2nd among research journals in the Biotechnology and Applied Microbiology category. It is important to note that Genome Biology is the top-ranking open access journal in this category. In summary, Genome Biology sets a high standard for scientific publications in the field, showcasing cutting-edge research and earning recognition among its peers.
期刊最新文献
Cohesin distribution alone predicts chromatin organization in yeast via conserved-current loop extrusion. DeepKINET: a deep generative model for estimating single-cell RNA splicing and degradation rates. Seqrutinator: scrutiny of large protein superfamily sequence datasets for the identification and elimination of non-functional homologues. Systemic interindividual DNA methylation variants in cattle share major hallmarks with those in humans. TaqTth-hpRNA: a novel compact RNA-targeting tool for specific silencing of pathogenic mRNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1